Framing Algebraic Expressions

EXERCISE 21

Question 1.

Write in the form of an algebraic expression :

(i) Perimeter (P) of a rectangle is two times the sum of its length (I) and its breadth (b).

(ii) Perimeter (P) of a square is four times its side.

(iii) Area of a square is square of its side.

(iv) Surface area of a cube is six times the square of its edge.

Solution:

(i) Let P be the perimeter and / be the length, and b be the breadth. P = 2 (I + b)

(ii) Let P be the perimeter and a be the side of the square.

P = 4a

(iii) Let A be the area of the square and a be the sides of the square. A = $(a)^2$

(iv) Let S be the surface area and a be the edges of the cube.

 $\hat{S} = 6a^2$

Question 2.

Express each of the following as an algebraic expression :

(i) The sum of x and y minus m.

(ii) The product of x and y divided by m.

(iii) The subtraction of 5m from 3n and then adding 9p to it.

(iv) The product of 12, x, y and z minus the product of 5, m and n.

(v) Sum of p and 2r - s minus sum of a and 3n + 4x.

Solution:

(i) x + y - m(ii) $\frac{xy}{m}$ (iii) 3n - 5m + 9p(iv) 12xyz - 5mn(v) p + 2r - s - (a + 3n + 4x)

Question 3.

Construct a formula for the following :

Total wages (₹ W) of a man whose basic wage is (₹ B) for t hours week plus (₹ R) per hour, if he Works a total of T hours.

Solution:

Wages for t hours = ₹ B Wages for overtime = R(T - t)=> Total wages = Wages for t hours + wages for overtime of (T - t) hours => ₹ W = ₹ B + ₹ R (T - t)

Question 4.

If x = 4, evaluate : (i) 3x + 8

(ii) $x^{2} - 2x$ (iii) $\frac{x^{2}}{2}$ **Solution:** (i) 3x + 8 $= (3 \times 4) + 8$ = 12 + 8 = 20(ii) $x^{2} - 2x$ $= (4)^{2} - 2(4)$ $= (4 \times 4) - (2 \times 4)$ = 16 - 8 = 8(iii) $\frac{x^{2}}{2}$ $= \frac{(4)^{2}}{2} = \frac{4 \times 4}{2} = \frac{16}{2} = 8$

Question 5.

If m - 6, evaluate : (i) 5m - 6(ii) $2m^2 + 3m$ (iii) $(2m)^2$ **Solution:** (i) 5m - 6= $(5 \times 6) - 6$ = 36 - 6 = 30(ii) $2m^2 + 3m$ = $2 (6)^2 + 3 (6)$ = $2 \times 6 \times 6 + 3 \times 6$ = 72 + 18 = 90(iii) $(2m)^2$ = $(2 \times m) \times (2 \times m)$

$$= (2 \times 6) \times (2 \times 6)$$

= $12 \times 12 = 144$

Question 6.

If x = 4, evaluate : (i) 12x + 7 (ii) 5x² + 4x (iii) $\frac{x^2}{8}$

(i)
$$12x + 7$$

= $(12 \times 4) + 7$
= $48 + 7 = 55$
(ii) $5x^2 + 4x$
= $(5 \times 4 \times 4) + 4$ (4)
= $80 + 16 = 96$
(iii) $\frac{x^2}{8}$
= $\frac{(4)^2}{8} = \frac{4 \times 4}{8} = \frac{16}{8} = 2$

Question 7.

If m = 2, evaluate : (i) 16m - 7 (ii) 15m² - 10m (iii) $\frac{1}{4} \times m^{3}$ Solution: 16m - 7 = (16 x 2) - 7 = 32 - 7 = 25 (ii) 15m² - 10m = 15 (2)² - 10(2) = (15 × 2 × 2) - (10 × 2) = 60 - 20 = 40 (iii) $\frac{1}{4} \times m^{3}$ = $\frac{1}{4} \times (2)^{3}$ = $\frac{1}{4} \times 2 \times 2 \times 2$ = $\frac{1}{4} \times 8 = 2$

Question 8.

If x = 10, evaluate :

(i)
$$100x + 225$$

(ii) $6x^2 - 25x$
(iii) $\frac{1}{50} \times x^3$
Solution:
(i) $100 x + 225$
 $= (100 \times 10) + 225$
 $= 1000 + 225 = 1225$

(ii)
$$6x^2 - 25x$$

= $6(10)^2 - 25(10)$
= $(6 \times 10 \times 10) - (25 \times 10)$
= $600 - 250 = 350$
(iii) $\frac{1}{50} \times x^3$
= $\frac{1}{50} \times 10 \times 10 \times 10$
= $\frac{1}{50} \times 1000 = 20$

Question 9.

If a = -10, evaluate : (i) 5a (ii) a^2 (iii) a^3 Solution: (i)5a $= 5 \times (-10) = -50$ (ii) a^2 $= (-10)^2$ $= -10 \times (-10)$ = 100(iii) $a^3 = a \times a \times a$ $= (-10)^3$ $= (-10) \times (-10) \times (-10)$ = -1000

Question 10.

If x = -6, evaluate : (i) 11x (ii) $4x^{2}$ (iii) $2x^{3}$ Solution: (i) 11x $= 11 \times (-6) = -66$ (ii) $4x^{2}$ $= 4 \times (-6) \times (-6)$ $= 4 \times 36 = 144$ (iii) $2x^{2}$ $= 2 \times (-6)^{3}$ $= 2 \times (-6) \times (-6) \times (-6)$ $= 2 \times (-216) = -432$

Question 11. If m = -7, evaluate : (i) 12m (ii) 2m² (iii) 2m³ Solution: . (i) 12m $= 12 \times (-7)$ = -84(ii) 2m³ $= 2 \times m \times m$ $= 2 \times (-7) \times (-7)$ $= 2 \times 49 = 98$ (iii) 2m³ $= 2 \times m \times m \times m$ $= 2 \times (-7) \times (-7) \times (-7)$ $= 2 \times (-343)$ =-686

Question 12.

Find the average (A) of four quantities p, q, r and s. If A = 6, p = 3, q = 5 and r = 7; find the value of s.

Solution:

Given, average of four quantities (A) = 6

and p = 3,q = 5, r = 7 and s = ? $\therefore A = \frac{p+q+r+s}{4}$ $\Rightarrow 6 = \frac{3+5+7+s}{4}$ $\Rightarrow 6 \times 4 = 15 + s$ $\Rightarrow s = 24 - 15 \Rightarrow s = 9$

Question 13.

If a = 5 and b = 6, evaluate : (i) 3ab (ii) 6a²b (iii) 2b² Solution: (i) 3*ab* $= 3 \times a \times b$ $= 3 \times 5 \times 6 = 90$ (ii) 6a² b $= 6 \times a \times a \times b$ $= 6 \times 5 \times 5 \times 6$ = 900 (iii) 2b² $= 2 \times b \times b$ $= 2 \times 6 \times 6$ = 72

Question 14.

If x = 8 and y = 2, evaluate : (i) 9xy (ii) 5x²y (iii) (4y)² **Solution:**

(i)
$$9xy$$

= $9 \times x \times y$
= $9 \times 8 \times 2$
= 144
(ii) $5x^2y$
= $5 \times x \times x \times y$
= $5 \times 8 \times 8 \times 2$
= 640
(iii) $(4y)^2$
= $4 \times y \times 4 \times y$
= $4 \times 2 \times 4 \times 2$
= $8 \times 8 = 64$

Question 15. If x = 5 and y = 4, evaluate : (i) 8xy(ii) $3x^2y$ (iii) $3y^2$ Solution: (i) 8xy $= 8 \times x \times y$ $= 8 \times 5 \times 4$ = 160(ii) $3x^2y$ $= 3 \times x \times x \times y$

 $= 3 \times 5 \times 5 \times 4$ = 300

(iii) $3y^2$ = $3 \times y \times y$ = $3 \times 4 \times 4$ = 48

Question 16.

If y = 5 and z = 2, evaluate : (i) 100yz (ii) 9y²z (iii) 5y² (iv) (5z)³

(i)
$$100yz$$

= $100 \times y \times z$
= $100 \times 5 \times 2$
= 1000
(ii) $9y^2z$
= $9 \times y \times y \times z$
= $9 \times 5 \times 5 \times 2$
= 450
(iii) $5y^2$
= $5 \times y \times y$
= $5 \times 5 \times 5$
= 125
(iv) $(5z)^3$
= $(5 \times z) \times (5 \times z) \times (5 \times z)$
= $5 \times 2 \times 5 \times 2 \times 5 \times 2$
= $10 \times 10 \times 10 = 1000$

Question 17.

If x = 2 and y = 10, evaluate : (i) 30xy (ii) 50xy² (iii) (10x)² (iv) 5y²

(i)
$$30xy$$

 $= 30 \times x \times y$
 $= 30 \times 2 \times 10 = 600$
(ii) $50xy^2$
 $= 50 \times x \times y \times y$
 $= 50 \times 2 \times 10 \times 10$
 $= 10000$
(iii) $(10x)^2$
 $= (10 \times x) \times (10 \times x)$
 $= 10 \times 2 \times 10 \times 2$
 $= 400$
(iv) $5y^2$
 $= 5 \times y \times y$
 $= 5 \times 10 \times 10$
 $= 500$

Question 18.

If m = 3 and n = 7, evaluate : (i) 12mn (ii) 5mn² (iii) (10m)² (iv) 4n²

(1)
$$12mn$$

= $12 \times m \times n$
= $12 \times 3 \times 7$
= 252
(ii) $5mn^2$
= $5 \times m \times n \times n$
= $5 \times 3 \times 7 \times 7$
= 735
(iii) $(10m)^2$.
= $(10 \times m) \times (10 \times m)$
= $(10 \times 3) \times (10 \times 3)$
= $30 \times 30 = 900$
(iv) $4n^2$
= $4 \times n \times n$
= $4 \times 7 \times 7$

Question 19. If a = -10, evaluate : (i) 3a - 2(ii) $a^2 + 8a$ (iii) $\frac{1}{5} \times a^2$

(i)
$$3a - 2$$

= $(3 \times a) - 2$
= $3 \times (-10) - 2$
= $-30 - 2 = -32$
(ii) $a^2 + 8a$
= $(a \times a) + (8 \times a)$
= $(-10 \times (-10)) + (8 \times (-10))$
= $100 + (-80)$
= $100 - 80 = 20$
(iii) $\frac{1}{5} \times a^2$
= $\frac{1}{5} \times (a \times a)$
= $\frac{1}{5} \times (-10) \times (-10)$
= $\frac{1}{5} \times 100 = 20$

Question 20.

If x = -6, evaluate : (i) 4x - 9 (ii) $3x^{2} + 8x$ (iii) $\frac{x^{2}}{2}$ Solution:

(i)
$$4x - 9$$

= $(4 \times x) - 9$
= $(4 \times (-6)) - 9$
= $-24 - 9 = -33$
(ii) $3x^2 + 8x$
= $(3 \times x \times x) + (8 \times x)$
= $(3 \times (-6) \times (-6)) + (8 \times (-6))$
= $-108 + (-48)$
= 60

(iii)
$$\frac{x^2}{2}$$
$$= \frac{x \times x}{2}$$
$$= \frac{(-6) \times (-6)}{2}$$
$$= \frac{36}{2} = 18$$

Question 21.

lf m = -8, evaluate : (i) 2m + 21 (ii) m² + 9m (iii) $\frac{m^2}{4}$

(i)
$$2m + 21$$

 $= 2 \times m + 21$
 $= 2 \times (-8) + 21$
 $= -16 + 21 = 5$
(ii) $m^2 + 9m$
 $= (m \times m) + (9 \times m)$
 $= (-8 \times -8) + (9 \times (-8))$
 $= 64 + (-72)$
 $= 64 - 72 = -8$
(iii) $\frac{m^2}{4} = \frac{m \times m}{4}$
 $= \frac{(-8)^2}{4} = \frac{(-8) \times (-8)}{4}$
 $= \frac{64}{4} = 16$

Question 22.

If p = -10, evaluate : (i) 6p + 50 (ii) $3p^2 - 20p$ (iii) $\frac{p^2}{50}$ Solution: (i) 6p + 50 $= (6 \times p) + 50$ $= (6 \times (-10) + 50)$ = -60 + 50 = -10(ii) $3p^2 - 20p$ $= (3 \times p \times p) - (20 \times p)$ $= (3 \times (-10) \times (-10) - (20 \times (-10))$ = 300 - (-200)= 300 + 200 = 500(iii) $\frac{p^2}{50}$ $=\frac{p \times p}{50}$ $=\frac{(-10)\times(-10)}{50}$. 100

$$=\frac{100}{50}=2$$

Question 23. If y = -8, evaluate : (i) 6y + 53 (ii) y² + 12y (iii) $\frac{y^3}{4}$ Solution:

(i)
$$6y + 53$$

= $(6 \times y) + 53$
= $(6 \times (-8)) + 53$
= $-48 + 53$
= 5
(ii) $y^2 + 12y$
= $(y \times y) + (12 \times y)$
= $((-8) \times (-8) + (12 \times (-8)))$
= $64 + (-96)$
= -32

(iii)
$$\frac{y^3}{4} = \frac{y \times y \times y}{4}$$
$$= \frac{(-8) \times (-8) \times (-8)}{4}$$
$$-256$$

$$=\frac{-256}{4}=-64$$

Question 24. If x = 2 and 7 = -4, evaluate : (i) 11xy (ii) 5x²y (iii) (5y)² (iv) 8x

- (i) 11xy= $11 \times x \times y$ = $11 \times 2 \times (-4)$ = -88(ii) $5x^2y$ = $5 \times x \times x \times y$ = $5 \times 2 \times 2 \times (-4)$ = -80(iii) $(5y)^2$ = $5 \times y \times 5 \times y$ = $5 \times (-4) \times 5 \times (-4)$ = $(-20) \times (-20)$ = 400(iv) $8x^2$ = $8 \times x \times x$
 - $= 8 \times 2 \times 2$ = 32

Question 25.

If m = 9 and n = -2, evaluate (i) 4mn (ii) 2m²n (iii) (2n)³ Solution: (i) 4mn $= 4 \times m \times n$ $= 4 \times 9 \times (-2)$ = -72 (ii) 2m²n $= 2 \times m \times m \times n$ $= 2 \times 9 \times 9 \times (-2)$ $= 2 \times 81 \times (-2)$ = - 324 (iii) $(2n)^3$ $= (2 \times n) \times (2 \times n) \times (2 \times n)$ $= (2 \times (-2)) \times (2 \times (-2)) \times (2 \times (-2))$ $= (-4) \times (-4) \times (-4)$ =-64

Question 26. If m = -8 and n = -2, evaluate : (i) 12mn (ii) 3m²n (iii) (4n)² **Solution:**

(i)
$$12mn$$

= $12 \times m \times n$
= $12 \times (-8) \times (-2)$
= 192 .
(ii) $3m^2n$
= $3 \times m \times m \times n$
= $3 \times 64 \times (-2) = -384$.
(iii) $(4n)^2$
= $4 \times n \times 4 \times n$

$$= 4 \times n \times 4 \times n$$

= (4 × (-2)) × (4 × (-2))
= (-8) × (-8) = 64

Question 27. If x = -5 and y = -8, evaluate : (i) 4xy (ii) 2xy² (iii) $4x^2$ (iv) 3y² Solution: (i) 4xy $= 4 \times x \times y$ $= 4 \times (-5) \times (-8) = 160$ (ii) $2xy^2$ $= 2 \times x \times y \times y$ $= 2 \times (-5) \times (-8) \times (-8)$ $= -10 \times 64$ = -640 (iii) 4x² $= 4 \times x \times x$ $= 4 \times (-5) \times (-5)$ = 100 (iv) 3y² $= 3 \times y \times y = 3 \times (-8) \times (-8)$ = 192

Question 28.

Find T, if T = 2a - b, a = 7 and b = 3. **Solution:** T = 2a - b, a = 1 and b = 3Put the value of a = 1, and b = 3 in above equation T = $(2 \times 7) -3$ T = 14 - 3 = 11T = 11

Question 29.

From the formula $B = 2a^2 - b^2$, calculate the value of B when a = 3 and b = -1. Solution: $B = 2a^2 - b^2$

Put the values of a = 3 and b = -1 in above equation $B = 2 \times (3)^2 - (-1)^2$ B = 18 - 1 B = 17Value of B is = 17

Question 30.

The wages \mathfrak{T} W of a man earning \mathfrak{T} x per hour for t hours are given by the formula W = xt. Find his wages for working 40 hours at a rate of \mathfrak{T} 39.45 per hour.

Solution:

T = 40 hours x = ₹ 39.45 W = xt = 40 x 39.45 W = ₹ 1578

Question 31.

The temperature in Fahrenhiet scale is represented by F and the tempera¬ture in Celsius scale is represented by C. If F = $\frac{9}{5}$ x C + 32, find F when C = 40.

Solution:

 $F = \frac{9}{5} \times C + 32$ Given, C = 40 $F = \frac{9}{5} \times 40 + 32 = 9 \times 8 + 32$ F = 104°