15. Linear Inequations

(Including Number Lines)

Exercise 15 (A)

Question 1.

If the replacement set is the set of natural numbers, solve. (i) x - 5 < 0(ii) x + 1 < 7(iii) 3x - 4 > 6(iv) 4x + 1 > 17Solution: (i) x - 5 < 0x - 5 + 5 < 0 + 5(Adding 5) => x < 5 Required answer = $\{1, 2, 3, 4\}$ (ii) $x + 1 \le 7 = x + 1 - 1 \le 7 - 1$ (Subtracting 1) => x ≤ 6 Required answer = $\{1, 2, 3, 4, 5, 6\}$ (iii) 3x - 4 > 63x - 4 + 4 > 6 + 4 (Adding 4) => 3x > 10 $\frac{3x}{3} > \frac{10}{3}$...(Dividing by 3) $=> \chi > \frac{10}{3}$ $=> \chi > \frac{3\frac{1}{3}}{3}$ Required answer = $\{4, 5, 6, \ldots\}$ (iv) $4x + 1 \ge 17$ $=> 4x + 1 - 1 \ge 17 - 1$ (Subtracting) $=> 4x \ge 16$ $=>\frac{4x}{4}\ge\frac{16}{4}$ (Dividing by 4) $=> x \ge 4$ Required answer = $\{4, 5, 6, \ldots\}$

Question 2.

If the replacement set = {-6, -3, 0, 3, 6, 9}; find the truth set of the following: (i) 2x - 1 > 9(ii) 3x + 7 < 1 **Solution:** (i) 2x - 1 > 9 $\Rightarrow 2x - 1 + 1 > 9 + 1$ (Adding 1) $\Rightarrow 2x > 10$ $\Rightarrow x > 5$ (Dividing by 2) $\Rightarrow x > 5$ Required answer = $\{6, 9\}$ (ii) $3x + 7 \le 1$ $\Rightarrow 3x + 7 - 7 \le 1 - 7$ (Subtracting 7) $\Rightarrow 3x \le - 6$ $\Rightarrow x \le - 2$ Required Answer = $\{-6, -3\}$

Question 3.

Solve 7 > 3x - 8; $x \in N$ Solution: 7 > 3x - 8 => 7 - 3x > 3x - 3x - 8 (Subtracting 3x) => 7 - 7 - 3x > 3x - 3x - 8 - 7 (Subtracting 7) => -3x > -15 => x < 5 (Dividing by -3) Required Answer = {1, 2, 3, 4} Note : Division by negative number reverses the inequality.

Question 4.

 $-17 < 9y - 8 ; y \in Z$ Solution: -17 < 9y - 8=> -17 + 8 < 9y - 8 + 8 (Adding 8)=> -9 < 9y=> -1 < y (Dividing by 9)Required number = {0, 1, 2, 3, 4, ...}

Question 5.

Solve $9x - 7 \le 28 + 4x$; $x \in W$ Solution: $9x - 1 \le 28 + 4x$ $=> 9x - 4x - 7 \le 28 + 4x - 4x$ (Subtracting 4x) $=> 5x - 7 \le 28$ $=> 5x - 7 + 7 \le 28 + 7$ (Adding 7) $=> 5x \le 35$ $=> x \le 7$ (Dividing by 5) Required answer = {0, 1, 2, 3, 4, 5, 6, 7}

Question 6.

Solve : $\frac{2}{3}x + 8 < 12$; $x \in W$

Solution:

Sol
$$\frac{2}{3}x + 8 < 12$$

$$\Rightarrow \frac{2}{3}x + 8 - 8 < 12 - 8$$

$$\Rightarrow \frac{2}{3}x < 4$$

$$\Rightarrow \frac{2}{3}x \times \frac{3}{2} < 4 \times \frac{3}{2}$$
 (Multiplying by $\frac{3}{2}$)

$$\Rightarrow x < 6$$

$$\therefore$$
 Required answer = $\{0, 1, 2, 3, 4, 5\}$

Question 7.
Solve -5 (x + 4) > 30 ; x
$$\in \mathbb{Z}$$

Solution:
Sol. -5 (x+4) > 30
 $\Rightarrow \frac{-5(x+4)}{-5} < \frac{30}{-5}$...(Dividing by -5)
Note : Division by a negative number reverse

Note : Division by a negative number reverses the equality

$$\Rightarrow x + 4 < -6$$

$$\Rightarrow x + 4 - 4 < -6 - 4 \qquad (Subtracting 4)$$

$$\Rightarrow x < -10$$

$$\therefore \text{ Required Answer} = \{-11, -12, -13, ...\}$$

Question 8.

Solve the inquation 8 - 2x > x - 5; $x \in N$. Solution: Sol. $8 - 2x \ge x - 5$; $x \in N$ $\Rightarrow 8 + 5 \ge 2x + x$ $\Rightarrow 13 \ge 3x \Rightarrow 3x \le 13$ $\Rightarrow x \le \frac{13}{3} = 4\frac{1}{3}$ $x = 1, 2, 3, 4 (x \in N)$ Solution set = {1, 2, 3, 4}

Question 9.

Solve the inequality 18 - 3 (2x - 5) > 12; $x \in W$. Solution: Sol. 18 - 3 (2x - 5) > 12; $x \in W$ $\Rightarrow 18 - 6x + 15 \quad 33 - 12 > 6x$ $\Rightarrow 21 > 6x$ $\Rightarrow 6x < 21 \Rightarrow x < \frac{21}{6} + \frac{7}{2} = 3\frac{1}{2}$ But $x \in W$, x = 0, 1, 2, 3

:. Solution set =
$$\{0, 1, 2, 3\}$$

Question 10. Solve : $\frac{2x+1}{3} + 15 < 17$; $x \in W$. Solution: Sol. $\frac{2x+1}{3} + 15 \le 17$; $x \in W$ $\Rightarrow \frac{2x+1}{3} \le 17 - 15 = 2$ $\Rightarrow 2x + 1 \le 6 \Rightarrow 2x \le 5$ $\Rightarrow x \le \frac{5}{2} = 2\frac{1}{2}$. But $x \in W$ $\therefore x = 0, 1, 2$ \therefore Solution set is = {0, 1, 2}

Question 11.

Solve : $-3 + x < 2, x \in \mathbb{N}$ Solution: Sol. $-3 + x < 2, x \in \mathbb{N}$ $\Rightarrow x < 2 - (-3)$ $\Rightarrow x < 2 + 3$ $\Rightarrow x < 5$ $\therefore x = 1, 2, 3, 4$ ($\because x \in \mathbb{N}$) \therefore Solution set = {1, 2, 3, 4}

Question 12. Solve : 4x - 5 > 10 - x, $x \in \{0, 1, 2, 3, 4, 5, 6, 7\}$ Solution: **Sol.** $4x - 5 > 10 - x, x \in \mathbb{N}$ \Rightarrow 4x + x > 10 + 5 $\Rightarrow 5x > 15$ $\Rightarrow x > \frac{15}{5} = 3$ $\therefore x = 4, 5, 6, 7$ Solution set = $\{4, 5, 6, 7\}$ **Question 13.** Solve : 15 - 2(2x - 1) < 15, $x \in Z$. Solution: **Sol.** $15 - 2(2x - 1) < 15, x \in \mathbb{Z}$ \Rightarrow 15 - 4x + 2 < 15 $\Rightarrow 17 - 4x < 15$ $\Rightarrow -4x < 15 - 17$ $\Rightarrow -4x < -2$ $\Rightarrow \frac{-4}{-4}x > \frac{-2}{-4} = \frac{1}{2}$ (Dividing by -4) $\therefore x = 1, 2, 3, 4, 5, \dots$ \therefore Solution set = {1, 2, 3, 4, 5,} Question 14. Solve : $\frac{2x+3}{5} > \frac{4x-1}{2}$, $x \in W$. Solution: **Sol.** $\frac{2x+3}{5} > \frac{4x-1}{2}, x \in W$ $\Rightarrow 2(2x + 3) > 5(4x - 1)$ \Rightarrow 4x + 6 > 20x - 5 \Rightarrow 4x - 20x > -5 - 6 $\Rightarrow -16x > -11$ $\Rightarrow x < \frac{-11}{-16}$ (Dividing by -16) $\Rightarrow x < \frac{11}{16}$ $\therefore x = 0$ \therefore Solution set = {0}

Exercise 15 (B)

Solve and graph the solution set on a number line : Question 1. x − 5 < -2 ; x ∈ N Solution: **Sol.** x - 5 < -2 $\Rightarrow x - 5 + 5 < -2 + 5$ (Adding 5 to both sides) $\Rightarrow x < 3$... The required graph is : -1 0 1 2 3 -**Question 2.** 3x - 1 > 5; $x \in W$ Solution: **Sol.** 3x-1 > 5 \Rightarrow 3x-1+1 > 5+1 (Adding 1 to both sides) $\Rightarrow 3x > 6$ $\Rightarrow \frac{3x}{3} > \frac{6}{3}$ (Dividing both sides by 3) $\Rightarrow x > 2$... The required graph is : -1 0 1 2 3 4 **Question 3.** -3x + 12 < -15 ; x ∈ R. **Sol.** -3x+12 < -15 $\Rightarrow -3x+12-12 < -15-12$ (Subtracting 12 from both sides) $\Rightarrow -3x < -27$ $\Rightarrow \frac{-3x}{-3} > \frac{-27}{-3}$ (Dividing both sides by -3) Note : Division by a negative number reverses the inequality. $\Rightarrow x > 9$

... The required graph is :

Question 4. 7 > 3x - 8; $x \in W$ Solution: **Sol.** $7 \ge 3x - 8$ \Rightarrow 7+8 \ge 3x-8+8 (Adding 8 to both sides) $\Rightarrow 15 \ge 3x$ $\Rightarrow \frac{15}{3} \ge \frac{3x}{3}$ (Dividing both sides by 3) $\Rightarrow 5 \ge x$... The required graph is : -1 0 I 2 3 4 5 6 Question 5. 8x - 8 < -24 ; $x \in Z$ Solution: **Sol.** $8x - 8 \le -24$ \Rightarrow 8x-8+8 \leq -24+8 (Adding 8 to both sides) $\Rightarrow 8x \leq -16$ $\Rightarrow \frac{8x}{8} \le \frac{-16}{8}$ (Dividing both sides by 8) $\Rightarrow x \leq -2$... The required graph is : → Т -4 -3 -2 -1 0 1 **Question 6.** 8x - 9 > 35 - 3x; $x \in N$ Solution: **Sol.** $8x-9 \ge 35-3x$ \Rightarrow 8x+3x-9 \geq 35-3x+3x (Adding 3x to both sides) \Rightarrow 11x-9 \geq 35 \Rightarrow 11x-9+9 \geq 35+9 (Adding 9 to both sides) $\Rightarrow 11x \ge 44$ $\Rightarrow \frac{11x}{11} \ge \frac{44}{11}$ (Dividing both sides by 11) $\Rightarrow x \ge 4$... The required graph is : ← -1 0 1 2 3 4

Question 7. $5x + 4 > 8x - 11; x \in Z$ Solution: Sol. 5x + 4 > 8x - 11 $\Rightarrow 5x - 5x + 4 > 8x - 5x - 11$ (Subtracting 5x from both sides) $\Rightarrow 4 > 3x - 11$ $\Rightarrow 4 + 11 > 3x - 11 + 11$ (Adding 11 to both sides) $\Rightarrow 15 > 3x$ $\Rightarrow \frac{15}{3} > \frac{3x}{3}$ (Dividing both sides by 3) $\Rightarrow 5 > x$ \therefore The required graph is $\overbrace{-2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}$

Question 8. $\frac{2x}{5} + 1 < -3$; x \in R Solution:

Sol.
$$\frac{2x}{5} + 1 < -3$$

$$\Rightarrow \frac{2x}{5} + 1 - 1 < -3 - 1$$
(Solutional form both of

(Subtracting 1 from both sides)

$$\Rightarrow \frac{2x}{5} < -4$$

$$\Rightarrow \frac{2x}{5} \times 5 < -4 \times 5$$

(Multiplying both sides by 5)

$$\Rightarrow 2x < -20$$

$$\Rightarrow \frac{2x}{2} < \frac{-20}{2}$$
 (Dividing both sides by 2)

$$\Rightarrow x < -10$$

$$\therefore \text{ The required graph is :}$$

Question 9. $\frac{x}{2} > -1 + \frac{3x}{4}$; $x \in N$

Solution:

Sol. $\frac{x}{2} > -1 + \frac{3x}{4}$ $\Rightarrow \frac{x}{2} \times 4 > -1 \times 4 + \frac{3x}{4} \times 4$ (Multiplying both sides by 4) $\Rightarrow 2x > -4 + 3x$ $\Rightarrow 2x - 2x > -4 + 3x - 2x$ (Subtracting 2x from both sides) $\Rightarrow 0 > -4 + x$ $\Rightarrow 0 + 4 > -4 + 4 + x$ (Adding 4 to both sides) $\Rightarrow 4 > x$ \therefore The required graph is : $\underbrace{-1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}$ Question 10. $\frac{2}{3}x + 5 \le \frac{1}{2}x + 6 \le x \in W$

$$sol. \frac{2}{3}x + 5 \le \frac{1}{2}x + 6; x \in W$$

Sol. $\frac{2}{3}x + 5 \le \frac{1}{2}x + 6$

$$\Rightarrow \frac{2}{3}x \times 6 + 5 \times 6 \le \frac{1}{2}x \times 6 + 6 \times 6$$
(Multiplying both sides by 6)

$$\Rightarrow 4x + 30 \le 3x + 36$$

$$\Rightarrow 4x - 3x + 30 \le 3x - 3x + 36$$
(Subtracting 3x from both sides)

$$\Rightarrow x + 30 \le 36$$

$$\Rightarrow x + 30 - 30 \le 36 - 30$$
(Subtracting 30 from both sides)

$$x \le 6$$
∴ The required graph is :

Question 11.

Solve the inequation 5(x - 2) > 4(x + 3) - 24 and represent its solution on a number line.

Given the replacement set is {-4, -3, -2, -1, 0, 1, 2, 3, 4}. **Solution:**

Sol. 5(x - 2) > 4 (x + 3) - 24 $\Rightarrow 5x - 10 > 4x + 12 - 24$ $\Rightarrow 5x - 4x > 10 - 12$ $\Rightarrow x > -2$ Since replacement set = {-4, -3, -2, -1, 0, 1, 2, 3, 4} \therefore Solution set = {-1, 0, 1, 2, 3, 4} \therefore Solution set on a number line is shown below.

Question 12.

Solve $\frac{2}{3}(x-1) + 4 < 10$ and represent its solution on a number line. Given replacement set is {-8, -6, -4, 3, 6, 8, 12}. Solution:

Question 13.

For each inequation, given below, represent the solution on a number line : (i) $\frac{3}{2}$ − 2x ≥ $\frac{1}{2}$; x ∈ W (ii) $3(2x - 1) \ge 2(2x + 3), x \in Z$ (iii) $2(4 - 3x) \le 4(x - 5), x \in W$ (iv) 4(3x + 1) > 2(4x - 1), x is a negative integer $(v)^{\frac{4-x}{2}} < 3, x \in \mathbb{R}$ $(vi) - 2(x + 8) \le 8, x \in R$ Solution: (i) $\frac{5}{2} - 2x \ge \frac{1}{2}, x \in W$ $\Rightarrow -2x \ge \frac{1}{2} - \frac{5}{2}$ $\Rightarrow -2x \ge \frac{-4}{2}$ $\Rightarrow -2x > -2$ $\Rightarrow x \leq 1$ $\therefore x = \{0, 1\}$ (*ii*) $3(2x-1) \ge 2(2x+3), x \in \mathbb{Z}$ \Rightarrow 6x - 3 \geq 4x + 6, x \in Z $\Rightarrow 6x - 4x \ge 6 + 3$ $\Rightarrow 2x \ge 9$ $\Rightarrow x \ge \frac{9}{2}$. ø. $\Rightarrow x \ge 4\frac{1}{2}$ $\therefore x = \{5, 6, 7,\}$ -3 -2 -1 0 1 2 3 4 5 6 7... (*iii*) $2(4-3x) \le 4(x-5), x \in W$ $8-6x \le 4x-20$