16. Understanding Shapes

(Including Polygons)

EXERCISE 16(A)

Question 1.

State which of the following are polygons :

If the given figure is a polygon, name it as convex or concave.

Solution:

Only Fig. (ii), (iii) and (v) are polygons. Fig. (ii) and (iii) are concave polygons while Fig. (v) is convex.

Question 2.

Calculate the sum of angles of a polygon with : (i) 10 sides (ii) 12 sides (iii) 20 sides (iv) 25 sides **Solution:** (i) No. of sides n = 10 sum of angles of polygon = $(n - 2) \times 180^{\circ}$ = $(10 - 2) \times 180^{\circ} = 1440^{\circ}$ (ii) no. of sides n = 12 sum of angles = $(n - 2) \times 180^{\circ}$ = $(12 - 2) \times 180^{\circ} = 10 \times 180^{\circ} = 1800^{\circ}$ (iii) n = 20 Sum of angles of Polygon = $(n - 2) \times 180^{\circ}$ = $(20 - 2) \times 180^{\circ} = 3240^{\circ}$ (iv) n = 25 Sum of angles of polygon = $(n - 2) \times 180^{\circ}$ = $(25 - 2) \times 180^{\circ} = 4140^{\circ}$

Question 3.

Find the number of sides in a polygon if the sum of its interior angles is : (i) 900° (ii) 1620° (iii) 16 right-angles (iv) 32 right-angles. Solution: (i) Let no. of sides = n Sum of angles of polygon = 900° $(n-2) \times 180^{\circ} = 900^{\circ}$ $n - 2 = \frac{500}{180}$ n - 2 = 5n = 5 + 2n = 7 (ii) Let no. of sides = n Sum of angles of polygon = 1620° (n − 2) x 180° = 1620° $n - 2 = \frac{1620}{180}$ n - 2 = 9n = 9 + 2n = 11 (iii) Let no. of sides = n Sum of angles of polygon = 16 right angles = $16 \times 90 = 1440^{\circ}$ $(n - 2) \times 180^{\circ} = 1440^{\circ}$ $n - 2 = \frac{1440}{180}$ n - 2 = 8n = 8 + 2n = 10 (iv) Let no. of sides = n Sum of angles of polygon = 32 right angles = $32 \times 90 = 2880^{\circ}$ $(n-2) \ge 180^\circ = 2880$ 2880 $n-2 = \frac{2880}{180}$ n - 2 = 16n = 16 + 2n = 18

Question 4.

Is it possible to have a polygon ; whose sum of interior angles is : (i) 870° (ii) 2340° (iii) 7 right-angles (iv) 4500° Solution: (i) Let no. of sides = n Sum of angles = 870° (n − 2) x 180° = 870° $n - 2 = \frac{870}{180}$ $n - 2 = \frac{29}{6}$ $n = \frac{29}{6} + 2$ $n = \frac{41}{6}$ Which is not a whole number. Hence it is not possible to have a polygon, the sum of whose interior angles is 870° (ii) Let no. of sides = n Sum of angles = 2340° (n − 2) x 180° = 2340° 2340 $n - 2 = \frac{2.510}{180}$ n - 2 = 13n = 13 + 2 = 15 Which is a whole number. Hence it is possible to have a polygon, the sum of whose interior angles is 2340°. (iii) Let no. of sides = nSum of angles = 7 right angles = $7 \times 90 = 630^{\circ}$ $(n - 2) \times 180^\circ = 630^\circ$ 630 $n - 2 = \frac{630}{180}$ $n - 2 = \frac{1}{2}$ $n = \frac{7}{2} + 2$ $n = \frac{11}{2}$ Which is not a whole number. Hence it is not possible to have a polygon, the sum of whose interior angles is 7 right-angles. (iv) Let no. of sides = n (n − 2) x 180° = 4500° 4500 $n - 2 = \frac{1000}{180}$ n - 2 = 25n = 25 + 2n = 27 Which is a whole number.

Hence it is possible to have a polygon, the sum of whose interior angles is 4500°.

Question 5.

(i) If all the angles of a hexagon are equal ; find the measure of each angle.(ii) If all the angles of a 14-sided figure are equal ; find the measure of each angle.Solution:

(i) No. of sides of hexagon, n = 6 Let each angle be = x° Sum of angles = $6x^{\circ}$ (n - 2) x 180° = Sum of angles (6 - 2) x 180° = $6x^{\circ}$ 4 x 180 = $6x^{\circ}$

$$x = \frac{4 \times 180}{6}$$

$$x = 120^{\circ}$$

$$\therefore \text{ Each angle of hexagon} = 120^{\circ} \text{ Ans.}$$
(ii) No. of sides of polygon, $n = 14$
Let each angle = x°

$$\therefore \qquad \text{Sum of angles} = 14x^{\circ}$$

$$\therefore \qquad (n-2) \times 180^{\circ} = \text{ Sum of angles of polygon}$$

$$\therefore \qquad (14-2) \times 180^{\circ} = 14x$$

$$12 \times 180^{\circ} = 14x$$

$$x = \frac{12 \times 180}{14}$$

$$x = \frac{1080}{7}$$

$$x = \left(154\frac{2}{7}\right)^{\circ} \text{ Ans.}$$

Question 6.

Find the sum of exterior angles obtained on producing, in order, the sides of a polygon with :

(i) 7 sides

(ii) 10 sides

(iii) 250 sides.

Solution:

(i) No. of sides n = 7 Sum of interior & exterior angles at one vertex = 180°

Sum of all interior & exterior angles = $7 \times 180^{\circ}$ $= 1260^{\circ}$ Sum of interior angles = $(n-2) \times 180^{\circ}$ $= (7-2) \times 180^{\circ}$ = 900° \therefore Sum of exterior angles = 1260°-900° = 360° Ans. No. of sides n = 10(*ii*) Sum of interior and exterior angles = $10 \times 180^{\circ}$ $= 1800^{\circ}$ But sum of interior angles = $(n-2) \times 180^{\circ}$ $= (10-2) \times 180^{\circ}$ $= 1440^{\circ}$ \therefore Sum of exterior angles = 1800-1440 = 360° Ans. (iii) No. of side n = 250Sum of all interior and exterior angles $= 250 \times 180^{\circ}$ = 45000° But sum of interior angles = $(n-2) \times 180^{\circ}$ $= (250-2) \times 180^{\circ}$ $= 248 \times 180^{\circ}$ $= 44640^{\circ}$ \therefore Sum of exterior angles = 45000-44640 = 360°

Question 7.

The sides of a hexagon are produced in order. If the measures of exterior angles so obtained are $(6x - 1)^\circ$, $(10x + 2)^\circ$, $(8x + 2)^\circ (9x - 3)^\circ$, $(5x + 4)^\circ$ and $(12x + 6)^\circ$; find each exterior angle.

Solution:

Sum of exterior angles of hexagon formed by producing sides of order = 360°

$$\therefore (6x-1)^{\circ} + (10x+2)^{\circ} + (8x+2)^{\circ} + (9x-3)^{\circ} + (5x+4)^{\circ} + (12x+6)^{\circ} = 360^{\circ} 50x+10^{\circ} = 360^{\circ} 50x = 360^{\circ} - 10^{\circ} 50x = 350^{\circ} x = 350^{\circ} x = 7$$

$$\therefore \text{ Angles are} (6x-1)^{\circ} ; (10x+2)^{\circ} ; (8x+2)^{\circ} ; (9x-3)^{\circ} ; (5x+4)^{\circ} \text{ and } (12x+6)^{\circ}$$

i.e.
$$(6 \times 7-1)^{\circ}$$
; $(10 \times 7+2)^{\circ}$; $(8 \times 7+2)^{\circ}$; $(9 \times 7-3)^{\circ}$; $(5 \times 7+4)^{\circ}$; $(12 \times 7+6)^{\circ}$

i.e. 41°; 72°, 58°; 60°; 39° and 90°

Question 8.

The interior angles of a pentagon are in the ratio 4 : 5 : 6 : 7 : 5. Find each angle of the pentagon.

Solution:

Let the interior angles of the pentagon be 4x, 5x, 6x, 7x, 5x. Their sum = 4x + 5x + 6x + 7x + 5x = 21x

Sum of interior angles of a polygon = $(n-2) \times 180^\circ = (5-2) \times 180^\circ = 540^\circ$

 $\therefore 27x = 540 \implies x = \frac{540}{27} \implies x = 20^{\circ}$ $\therefore \text{ Angles are } 4 \times 20^{\circ} = 80^{\circ}$ $5 \times 20^{\circ} \neq 100^{\circ}$ $6 \times 20^{\circ} = 120^{\circ}$ $7 \times 20^{\circ} = 140^{\circ}$ $5 \times 20 = 100^{\circ}$

Question 9.

Two angles of a hexagon are 120° and 160°. If the remaining four angles are equal, find each equal angle.

Solution:

Two angles of a hexagon are 120°, 160°

Let remaining four angles be x, x, x and x. Their sum = $4x + 280^{\circ}$ But sum of all the interior angles of a hexagon

$$= (6 - 2) \times 180^{\circ}$$
$$= 4 \times 180^{\circ} = 720^{\circ}$$
$$\therefore \qquad 4x + 280^{\circ} = 720^{\circ}$$
$$\Rightarrow \qquad 4x = 720^{\circ} - 280^{\circ} = 440^{\circ} \implies x = 110^{\circ}$$

```
∴ Equal angles are 110° (each)
```

Question 10.

The figure, given below, shows a pentagon ABCDE with sides AB and ED parallel to each other, and $\angle B : \angle C : \angle D = 5 : 6 : 7$.

(i) Using formula, find the sum of interior angles of the pentagon.

(ii) Write the value of $\angle A + \angle E$

(iii) Find angles B, C and D.

Solution:

(i) Sum of interior angles of the pentagon

$$= (5 - 2) \times 180^{\circ}$$

$$= 3 \times 180^{\circ} = 540^{\circ} \quad [\because \text{ sum for a polygon} \\ \text{of } x \text{ sides} = (x - 2) \times 180^{\circ}]$$
(ii) Since AB || ED

$$\therefore \angle A + \angle E = 180^{\circ}$$
(iii) Let $\angle B = 5x \quad \angle C = 6x \quad \angle D = 7x$

$$\therefore 5x + 6x + 7x + 180^{\circ} = 540^{\circ} \\ (\angle A + \angle E = 180^{\circ}) \\ \text{Proved in (ii)}$$

$$18x = 540^{\circ} - 180^{\circ}$$

$$\Rightarrow 18x = 360^{\circ} \Rightarrow x = 20^{\circ}$$

$$\therefore \angle B = 5 \times 20^{\circ} = 100^{\circ}, \angle C = 6 \times 20 = 120^{\circ}$$

$$\angle D = 7 \times 20 = 140^{\circ}$$

Question 11.

Two angles of a polygon are right angles and the remaining are 120° each. Find the number of sides in it.

Solution:

Let number of sides = n

Sum of interior angles = $(n-2) \times 180^{\circ}$ $= 180n - 360^{\circ}$ Sum of 2 right angles = $2 \times 90^{\circ}$ $= 180^{\circ}$ Sum of other angles = $180n-360^{\circ}-180^{\circ}$ *.*.. = 180n - 540No. of vertices at which these angles are formed = n - 2Each interior angle = $\frac{180n - 540}{n - 2}$ *.*.. $\frac{180n - 540}{n - 2} = 120^{\circ}$ *.*.. 180n - 540 = 120n - 240180n - 120n = -240 + 54060n = 300 $n = \frac{300}{60}$ n = 5

Question 12.

In a hexagon ABCDEF, side AB is parallel to side FE and $\angle B : \angle C : \angle D : \angle E = 6 : 4 : 2 : 3$. Find $\angle B$ and $\angle D$.

Solution:

$$\angle D = \frac{2}{15} \times 540^\circ = 72^\circ$$

Hence $\angle B = 216^\circ$; $\angle D = 72^\circ$ Ans.

Question 13.

the angles of a hexagon are $x + 10^{\circ}$, $2x + 20^{\circ}$, $2x - 20^{\circ}$, $3x - 50^{\circ}$, $x + 40^{\circ}$ and $x + 20^{\circ}$. Find x.

Solution:

```
Sol. Angles of a hexagon are x + 10^{\circ}, 2x + 20^{\circ},

2x - 20^{\circ}, 3x - 50^{\circ}, x + 40^{\circ} and x + 20^{\circ}

\therefore But sum of angles of a hexagon = (x - 2) \times 180^{\circ}

= (6 - 2) \times 180^{\circ} = 4 \times 180^{\circ} = 720^{\circ}

But sum = x + 10 + 2x + 20^{\circ} + 2x - 20^{\circ} + 3x

- 50^{\circ} + x + 40 + x + 20

= 10x + 90 - 70 = 10x + 20

\therefore 10x + 20 = 720^{\circ} \Rightarrow 10x = 720 - 20 = 700

\Rightarrow x = \frac{700^{\circ}}{10} = 70^{\circ}

\therefore x = 70^{\circ}
```

Question 14.

In a pentagon, two angles are 40° and 60° , and the rest are in the ratio 1 : 3 : 7. Find the biggest angle of the pentagon.

Solution:

In a pentagon, two angles are 40° and 60° Sum of remaining 3 angles = 3 x 180° = $540^{\circ} - 40^{\circ} - 60^{\circ} = 540^{\circ} - 100^{\circ} = 440^{\circ}$ Ratio in these 3 angles =1 : 3 : 7 Sum of ratios =1 + 3 + 7 = 11 Biggest angle = $\frac{440 \times 7}{11}$ = 280°

EXERCISE 16(B)

Question 1.

Fill in the blanks : In case of regular polygon, with :

no. of sides	each exterior angle	each interior angle
(i)8		
(ii)12		
(iii)	72°	
(iv)	45°	
(v)		150°
(vi)		140°

Solution:

no. of sides	each exterior	each interior
	angle	angle
(i) 8	45°	135°
(ii) 12	30°	150°
(iii) 5	72°	108°
(iv) 8	45°	135°
(v) 12	_ 30°	, 150°
(vi) 9	40°	140°
Explanation		

- (i) Each exterior angle = $\frac{360^{\circ}}{8} = 45^{\circ}$ Each interior angle = $180^{\circ} - 45^{\circ} - 135^{\circ}$
- (ii) Each exterior angle = $\frac{360^{\circ}}{12} = 30^{\circ}$ Each interior angle = $180^{\circ} - 30^{\circ} = 150^{\circ}$
- (iii) Since each exterior = 72°
- \therefore Number of sides = $\frac{360^{\circ}}{72^{\circ}}$ = 5

Also interior angle = $180^\circ - 72^\circ = 108^\circ$

- (iv) Since each exterior angle = 45°
- \therefore Number of sides = $\frac{360^{\circ}}{45^{\circ}}$ = 8

Interior angle = $180^{\circ} - 45^{\circ} = 135^{\circ}$

- (v) Since interior angle = 150°
- \therefore Exterior angle = $180^{\circ} 150^{\circ} = 30^{\circ}$

$$\therefore$$
 Number of sides = $\frac{360^{\circ}}{30^{\circ}}$ = 12

- (vi) Since interior angle = 140°
- \therefore Exterior angle = $180^{\circ} 140^{\circ} = 40^{\circ}$

$$\therefore$$
 Number of sides = $\frac{360^\circ}{40^\circ}$ = 9

Question 2.

Find the number of sides in a regular polygon, if its each interior angle is : (i) 160° (ii) 135° (iii) $1\frac{1}{5}$ of a right-angle **Solution:**

(i) Let no. of sides of regular polygon be n. Each interior angle = 160°

 $\frac{(n-2)}{n} \times 180^\circ = 160^\circ$ *:*. $180n-360^{\circ} = 160n$ $180n - 160n = 360^{\circ}$ $20n = 360^{\circ}$ n = 18 Ans. (*ii*) No. of sides = nEach interior angle = 135° $\frac{(n-2)}{n} \times 180^\circ = 135^\circ$ $180n-360^\circ = 135n$ $180n - 135n = 360^{\circ}$ $45n = 360^{\circ}$ n = 8 Ans. (iii) No. of sides = nEach interior angle = $1\frac{1}{5}$ right angles $=\frac{6}{5} \times 90$ $= 108^{\circ}$ $\frac{(n-2)}{n} \times 180^\circ = 108^\circ$ *:*.. $180n-360^{\circ} = 108n$ $180n - 108n = 360^{\circ}$ $72n = 360^{\circ}$ n = 5 Ans.

Question 3.

 $=\frac{1}{3} \times 90$

Find the number of sides in a regular polygon, if its each exterior angle is : (i) $\frac{1}{3}$ of a right angle (ii) two-fifth of a right-angle. **Solution:** (i) Each exterior angle = $\frac{1}{3}$ of a right angle

 $\therefore \qquad \frac{360^{\circ}}{n} = 30^{\circ}$ $\therefore \qquad n = \frac{360^{\circ}}{30^{\circ}}$ n = 12 Ans.(ii) Each exterior angle = $\frac{2}{5}$ of a right-angle $= \frac{2}{5} \times 90^{\circ}$ $= 36^{\circ}$ Let number of sides = n $\therefore \qquad \frac{360^{\circ}}{n} = 36^{\circ}$ $n = \frac{360^{\circ}}{36^{\circ}}$ n = 10 Ans.

Question 4.

Is it possible to have a regular polygon whose each interior angle is : (i) 170° (ii) 138° **Solution:** (i) No. of sides = n each interior angle = 170°

$$\therefore \qquad \frac{(n-2)}{n} \times 180^{\circ} = 170^{\circ}$$

$$180n - 360^{\circ} = 170n$$

$$180n - 170n = 360^{\circ}$$

$$10n = 360^{\circ}$$

$$n = \frac{360^{\circ}}{10}$$

$$n = 36$$

which is a whole number.

Hence it is possible to have a regular polygon whose interior angle is 170° .

(ii) Let no. of sides = n

each interior angle = 138°

$$\therefore \qquad \frac{(n-2)}{n} \times 180^{\circ} = 138^{\circ}$$

$$180n - 360^{\circ} = 138n$$

$$180n - 138n = 360^{\circ}$$

$$42n = 360^{\circ}$$

$$n = \frac{360^\circ}{42}$$
$$n = \frac{60^\circ}{7}$$

Which is not a whole number.

Hence it is not possible to have a regular polygon having interior angle of 138°.

Question 5.

Is it possible to have a regular polygon whose each exterior angle is : (i) 80° (ii) 40% of a right angle. Solution: (i) Let no. of sides = n each exterior angle = 80° $\frac{360^{\circ}}{n} = 80^{\circ}$

$$n = \frac{360^{\circ}}{80^{\circ}}$$
$$n = \frac{9}{2}$$

Which is not a whole number.

Hence it is not possible to have a regular polygon whose each exterior angle is of 80° . (ii) Let number of sides = n

Each exterior angle = 40% of a right angle

$$= \frac{40}{100} \times 90$$
$$= 36^{\circ}$$
$$n = \frac{360^{\circ}}{36^{\circ}}$$
$$n = 10$$

Which is a whole number.

Hence it is possible to have a regular polygon whose each exterior angle is 40% of a right angle.

Question 6.

Find the number of sides in a regular polygon, if its interior angle is equal to its exterior angle.

Solution:

Let each exterior angle or interior angle be = x°

A
A

$$x + x = 180^{\circ}$$

 $2x = 180^{\circ}$
 $2x = 180^{\circ}$
 $x = 90^{\circ}$
Now, let no. of sides = n
 $x = each$ exterior angle = $\frac{360^{\circ}}{n}$
 $90^{\circ} = \frac{360^{\circ}}{n}$
 $n = \frac{360^{\circ}}{90^{\circ}}$
 $n = 4$ Ans.

Question 7.

The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.

Solution:

Let interior angle = x° Exterior angle = $\frac{1}{3}x^{\circ}$

Question 8.

The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :

(i) measure of each interior angle ;(ii) measure of each exterior angle and

(iii) number of sides in the polygon.

Solution:

Let exterior angle = x°

Interior angle = $5x^{\circ}$ x + $5x = 180^{\circ}$ $6x = 180^{\circ}$ x = 30° Each exterior angle = 30° Each interior angle = $5 \times 30^{\circ} = 150^{\circ}$ Let no. of sides = n

 $\therefore \text{ each exterior angle} = \frac{360^{\circ}}{n}$ $30^{\circ} = \frac{360^{\circ}}{n}$ $n = \frac{360^{\circ}}{30^{\circ}}$ n = 12Hence (i) 150° (ii) 30° (iii) 12

Question 9.

The ratio between the interior angle and the exterior angle of a regular polygon is 2 : 1. Find :

(i) each exterior angle of the polygon ;

(ii) number of sides in the polygon

Solution:

Interior angle : exterior angle = 2 : 1

Let interior angle = $2x^\circ$ & exterior angle = x° 2x x А в $2x^\circ + x^\circ = 180^\circ$... $3x = 180^{\circ}$ $x = 60^{\circ}$ (i) Each ext ior angle = 60° *:*.. Let \dots if sides = n $\frac{360^{\circ}}{n} = 60^{\circ}$ ċ. $n = \frac{360^{\circ}}{2}$ *(ii)* n = 6 \therefore (i) 60° (ii) 6 Ans.

Question 10.

The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.

Solution:

Let exterior angle = x° & interior angle = $4x^\circ$

Question 11.

The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.

Solution:

Let number of sides = n Sum of exterior angles = 360° Sum of interior angles = $360^{\circ} \times 2 = 720^{\circ}$ Sum of interior angles = $(n - 2) \times 180^{\circ}$ $720^{\circ} = (n - 2) \times 180^{\circ}$ $n - 2 = \frac{720}{180}$ n - 2 = 4 n = 4 + 2n = 6

Question 12.

AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :

(i) its each interior angle,

(ii) its each exterior angle

(iii) the number of sides in the polygon.

Solution:

Question 13.

Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon. Solution:

Let number of sides of regular polygon = nAB & DC when produced meet at P such that $\angle P = 90^{\circ}$

: Interior angles are equal.

 $\therefore \qquad \angle ABC = \angle BCD$

 \therefore 180°- $\angle ABC = 180° - \angle BCD$

 $\therefore \qquad \angle PBC = \angle BCP$

But

$$\angle P = 90^{\circ}$$
 (Given)

$$\therefore \qquad \angle PBC + \angle BCP = 180^\circ - 90^\circ = 90^\circ$$

 $\therefore \qquad \angle PBC = \angle BCP$

$$= \frac{1}{2} \times 90^\circ = 45^\circ$$

 \therefore Each exterior angle = 45°

 $\therefore \qquad 45^\circ = \frac{360^\circ}{n}$ $n = \frac{360^\circ}{45^\circ}$ $n = 8 \quad \text{Ans.}$

Question 14.

In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of: (i) ∠BAE (ii) ∠ABE

(iii) ∠ABED

Solution:

(i) Since number of sides in the pentagon = 5 Each exterior angle = $\frac{360}{5}$ = 72°

$$\angle BAE = 180^{\circ} - 72^{\circ} = 108^{\circ}$$

$$\stackrel{D}{\longrightarrow} C$$

$$\stackrel{(ii) In \Delta ABE, AB = AE}{\therefore \angle ABE = \angle AEB}$$
But $\angle BAE + \angle ABE + \angle AEB = 180^{\circ}$
 $\therefore 108^{\circ} + 2 \angle ABE = 180^{\circ} - 108^{\circ} = 72^{\circ}$
 $\Rightarrow \angle ABE = 36^{\circ}$
(iii) Since $\angle AED = 108^{\circ}$
 $\therefore c$
 $\Rightarrow \angle AEB = 36^{\circ}$
 $\Rightarrow \angle AEB = 36^{\circ}$
 $\Rightarrow \angle AEB = 36^{\circ}$

Question 15.

The difference between the exterior angles of two regular polygons, having the sides equal to (n - 1) and (n + 1) is 9°. Find the value of n.

Solution:

We know that sum of exterior angles of a polynomial is 360°

(i) If sides of a regular polygon = n - 1

Then each angle = $\frac{360^{\circ}}{n-1}$ and if sides are n + 1, then each angle = $\frac{360^{\circ}}{n+1}$ According to the condition,

$$\frac{360^{\circ}}{n-1} - \frac{360^{\circ}}{n+1} = 9$$
$$\Rightarrow 360 \left[\frac{1}{x-1} - \frac{1}{x+1} \right] = 9$$

$$\Rightarrow 360 \left[\frac{n+1-n+1}{(n-1)(n+1)} \right] = 9$$

$$\Rightarrow \frac{2 \times 360}{n^2 - 1} = 9 \Rightarrow n^2 - 1 = \frac{2 \times 360}{9} = 80$$

$$\Rightarrow n^2 - 1 = 80 \Rightarrow n^2 = 1 - 80 = 0$$

$$\Rightarrow n^2 - 81 = 0$$

$$\Rightarrow (n)^2 - (9)^2 = 0$$

$$\Rightarrow (n+9) (n-9) = 0$$

Either $n+9 = 0$, then $n = -9$ which is not possible being negative, or $n-9 = 0$, then $n = 9$
 $\therefore n = 9$
 \therefore No. of sides of a regular polygon = 9

Question 16.

If the difference between the exterior angle of a n sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.

Solution:

We know that sum of exterior angles of a polygon = 360° Each exterior angle of a regular polygon of 360°

$$n \text{ sides} = \frac{360^\circ}{n}$$

and exterior angle of the regular polygon of

$$(n + 1) \text{ sides} = \frac{360^{\circ}}{n + 1}$$

$$\therefore \frac{360^{\circ}}{n} - \frac{360^{\circ}}{n + 1} = 12$$

$$\Rightarrow 360 \left[\frac{1}{n} - \frac{1}{n + 1} \right] = 12 \Rightarrow 360 \left[\frac{n + 1 - n}{n(n + 1)} \right] = 12$$

$$\Rightarrow \frac{30 \times 1}{n^2 + n} = 12 \Rightarrow 12 (n^2 + n) = 360^{\circ}$$

$$\Rightarrow n^2 + n = 36^{\circ} \qquad \text{(Dividing by 12)}$$

$$\Rightarrow n^2 + n - 30 = 0$$

$$\Rightarrow n^2 + 6n - 5n - 30 = 0 \left\{ \begin{array}{c} \because -30 = 6 \times (-5) \\ 1 = 6 - 5 \end{array} \right\}$$

 $\Rightarrow n(n+6) - 5(n+6) = 0$

$$\Rightarrow (n+6)(n-5) = 0$$

Either n + 6 = 0, then n = -6 which is not possible being negative

or n - 5 = 0, then n = 5

Hence n = 5.

Question 17.

The ratio between the number of sides of two regular polygons is 3 : 4 and the ratio between the sum of their interior angles is 2 : 3. Find the number of sides in each polygon.

Solution:

Ratio of sides of two regular polygons = 3 : 4 Let sides of first polygon = 3n and sides of second polygon = 4n

Sum of interior angles of first polygon

 $= (2 \times 3n - 4) \times 90^{\circ} = (6n - 4) \times 90^{\circ}$

and sum of interior angle of second polygon = $(2 \times 4n - 4) \times 90^\circ = (8n - 4) \times 90^\circ$

$$\therefore \frac{(6n-4) \times 90^{\circ}}{(8n-4) \times 90^{\circ}} = \frac{2}{3}$$
$$\Rightarrow \frac{6n-4}{8n-4} = \frac{2}{3}$$
$$\Rightarrow 18n-12 = 16n-8$$
$$\Rightarrow 18n-16n = -8 + 12$$

$$\Rightarrow 18n - 10n - -8 +$$

$$\Rightarrow 2n = 4$$

$$\Rightarrow n = 2$$

... No. of sides of first polygon

$$= 3n = 3 \times 2 = 6$$

and no. of sides of second polygon

 $=4n=4\times 2=8$

Question 18.

Three of the exterior angles of a hexagon are 40°, 51 ° and 86°. If each of the remaining exterior angles is x° , find the value of x.

Solution:

Sum of exterior angles of a hexagon = $4 \times 90^{\circ} = 360^{\circ}$ Three angles are 40° , 51° and 86° Sum of three angle = $40^{\circ} + 51^{\circ} + 86^{\circ} = 177^{\circ}$ Sum of other three angles = $360^{\circ} - 177^{\circ} = 183^{\circ}$ Each angle is x° $3x = 183^{\circ}$ $x = \frac{183}{3}$ Hence x = 61

Question 19.

Calculate the number of sides of a regular polygon, if:
(i) its interior angle is five times its exterior angle.
(ii) the ratio between its exterior angle and interior angle is 2 : 7.
(iii) its exterior angle exceeds its interior angle by 60°.
Solution:

Let number of sides of a regular polygon = n (i) Let exterior angle = x Then interior angle = 5x $x + 5x = 180^{\circ}$ $\Rightarrow x = \frac{180^{\circ}}{6} = 30^{\circ}$

- $\therefore \text{ Number of sides } (n) = \frac{360^{\circ}}{30} = 12$
- (*ii*) Ratio between exterior angle and interior angle = 2 : 7

e.

Let exterior angle = 2x

Then interior angle = 7x

$$\therefore 2x + 7x = 180^{\circ}$$

$$\Rightarrow 9x = 180^{\circ}$$

$$\Rightarrow x = \frac{180^\circ}{9} = 20^\circ$$

 \therefore Ext. angle = $2x = 2 \times 20^\circ = 40^\circ$

$$\therefore \text{ No. of sides} = \frac{360^\circ}{40} = 9$$

(*iii*) Let interior angle = x

Then exterior angle = x + 60

$$\therefore x + x + 60^{\circ} = 180^{\circ}$$

 \mathbf{x}_{i}

$$\Rightarrow 2x = 180^\circ - 60^\circ = 120^\circ \Rightarrow x = \frac{120^\circ}{2} = 60^\circ$$

 \therefore Exterior angle = $60^{\circ} + 60^{\circ} = 120^{\circ}$

$$\therefore$$
 Number of sides = $\frac{360^\circ}{120^\circ} = 3$

Question 20.

The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.

Solution:

Sum of interior angles = 3 x Sum of exterior angles Let exterior angle = x The interior angle = 3x $x + 3x = 180^{\circ}$ $\Rightarrow 4x = 180^{\circ}$ $\Rightarrow x = \frac{180}{4}$ $\Rightarrow x = 45^{\circ}$ Number of sides = $\frac{360}{45} = 8$

EXERCISE 16(C)

Question 1.

Two angles of a quadrilateral are 89° and 113°. If the other two angles are equal; find the equal angles.

Solution:

Let the other angle = x° According to given, $89^{\circ} + 113^{\circ} + x^{\circ} + x^{\circ} = 360^{\circ}$ $2x^{\circ} = 360^{\circ} - 202^{\circ}$ $2x^{\circ} = 158^{\circ}$ $x^{\circ} = \frac{158}{2}$ other two angles = 79° each

Question 2.

Two angles of a quadrilateral are 68° and 76° . If the other two angles are in the ratio 5 : 7; find the measure of each of them.

Solution:

Two angles are 68° and 76° Let other two angles be 5x and 7x $68^{\circ} + 76^{\circ} + 5x + 7x = 360^{\circ}$ $12x + 144^{\circ} = 360^{\circ}$ $12x = 360^{\circ} - 144^{\circ}$ $12x = 216^{\circ}$ $x = 18^{\circ}$ angles are 5x and 7x i.e. 5 x 18° and 7 x 18° i.e. 90° and 126°

Question 3.

Angles of a quadrilateral are $(4x)^\circ$, $5(x+2)^\circ$, $(7x - 20)^\circ$ and $6(x+3)^\circ$. Find : (i) the value of x. (ii) each angle of the quadrilateral. **Solution:** Angles of quadrilateral are, $(4x)^\circ$, $5(x+2)^\circ$, $(7x-20)^\circ$ and $6(x+3)^\circ$.

$$(4x)^{\circ}, 5(x+2)^{\circ}, (7x-20)^{\circ} \text{ and } 6(x+3)^{\circ}$$

$$4x+5(x+2)+(7x-20)+6(x+3) = 360^{\circ}$$

$$4x+5x+10+7x-20+6x+18 = 360^{\circ}$$

$$22x+8 = 360^{\circ}$$

$$22x = 360^{\circ}-8^{\circ}$$

$$22x = 352^{\circ}$$

$$x = 16^{\circ} \text{ Ans.}$$

Hence angles are,

$$(4x)^{\circ} = (4\times16)^{\circ} = 64^{\circ},$$

$$5(x+2)^{\circ} = 5(16+2)^{\circ} = 90^{\circ},$$

$$(7x-20)^{\circ} = (7\times16-20)^{\circ} = 92^{\circ}$$

 $6(x+3)^\circ = 6(16+3) = 114^\circ$ Ans.

Question 4.

Use the information given in the following figure to find : (i) \boldsymbol{x}

(ii) $\angle B$ and $\angle C$ C D 8x - 15° A C 2x+4° B

Solution:

$$\angle A = 90^{\circ}$$
 (Given)

$$\angle B = (2x+4^{\circ})$$

$$\angle C = (3x-5^{\circ})$$

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$90^{\circ} + (2x+4^{\circ}) + (3x-5^{\circ}) + (8x - 15^{\circ}) = 360^{\circ}$$

$$90^{\circ} + 2x+4^{\circ} + 3x - 5^{\circ} + 8x - 15^{\circ} = 360^{\circ}$$

$$\Rightarrow 74^{\circ} + 13x = 360^{\circ}$$

$$\Rightarrow 13x = 360^{\circ} - 74^{\circ}$$

$$\Rightarrow 13x = 286^{\circ}$$

$$\Rightarrow x = 22^{\circ}$$

$$\therefore \angle B = 2x + 4 = 2 \times 22^{\circ} + 4 = 48^{\circ}$$

$$\angle C = 3x - 5 = 3 \times 22^{\circ} - 5 = 61^{\circ}$$

Hence (i) 22° (ii) $\angle B = 48^{\circ}, \angle C = 61^{\circ}$ Ans.

Question 5.

In quadrilateral ABCD, side AB is parallel to side DC. If $\angle A : \angle D = 1 : 2$ and $\angle C : \angle B = 4 : 5$

(i) Calculate each angle of the quadrilateral.

(ii) Assign a special name to quadrilateral ABCD

Solution:

4y 2r x $\angle A : \angle D = 1 : 2$ ÷ Let $\angle A = x$ and $\angle B = 2x$ $\angle C : \angle B = 4 : 5$ ÷ Let $\angle C = 4y$ and $\angle B = 5y$ AB || DC ÷ $\angle A + \angle D = 180^{\circ}$ *:*.. $x + 2x = 180^{\circ}$ $3x = 180^{\circ}$ $x = 60^{\circ}$ $A = 60^{\circ}$ λ. $\angle D = 2x = 2 \times 60 = 120^{\circ}$ $\angle B + \angle C = 180^{\circ}$ Again $5y + 4y = 180^{\circ}$ $9y = 180^{\circ}$ $y = 20^{\circ}$ $\angle B = 5y = 5 \times 20 = 100^{\circ}$... $\angle C = 4y = 4 \times 20 = 80^{\circ}$ Hence $\angle A = 60^\circ$; $\angle B = 100^\circ$; $\angle C = 80^\circ$ and $\angle D = 120^{\circ}$ Ans.

(ii) Quadrilateral ABCD is a trapezium because

one pair of opposite side is parallel

Question 6.

From the following figure find ; (i) x (ii) ∠ABC (iii) ∠ACD **Solution:**

$$x = \frac{312}{12} = 26^{\circ}$$

(ii) $\angle ABC = 4x$ $4 \times 26 = 104^{\circ}$ (iii) $\angle ACD = 180^{\circ}-4x-48^{\circ}$ $= 180^{\circ}-4 \times 26^{\circ}-48^{\circ}$ $= 180^{\circ}-104^{\circ}-48^{\circ}$ $= 180^{\circ}-152^{\circ} = 28^{\circ}$ (i) In Quadrilateral ABCD, $x + 4x + 3x + 4x + 48^{\circ} = 360^{\circ}$ $12x = 360^{\circ} - 48^{\circ}$

 $12x = 360^{\circ} - 48^{\circ}$ 12x = 312

Question 7.

Given : In quadrilateral ABCD ; $\angle C = 64^\circ$, $\angle D = \angle C - 8^\circ$; $\angle A = 5(a+2)^\circ$ and $\angle B =$ 2(2a+7)°. Calculate $\angle A$. Solution: $\angle C = 64^{\circ}$ (Given) $\angle D = \angle C - 8^{\circ} = 64^{\circ} - 8^{\circ} = 56^{\circ}$ $\angle A = 5(a+2)^{\circ}$ ∠B = 2(2a+7)° Now $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $5(a+2)^{\circ} + 2(2a+7)^{\circ} + 64^{\circ} + 56^{\circ} = 360^{\circ}$ $5a + 10 + 4a + 14^{\circ} + 64^{\circ} + 56^{\circ} = 360^{\circ}$ 9a + 144° = 360° $9a = 360^{\circ} - 144^{\circ}$ 9a = 216° a = 24° $\angle A = 5 (a + 2) = 5(24+2) = 130^{\circ}$

Question 8.

In the given figure : $\angle b = 2a + 15$ and $\angle c = 3a + 5$; find the values of b and c.

Solution:

Stun of angles of quadrilateral = 360° $70^{\circ} + a + 2a + 15 + 3a + 5 = <math>360^{\circ}$ $6a + 90^{\circ} = 360^{\circ}$ $6a = 270^{\circ}$ $a = 45^{\circ}$ $b = 2a + 15 = 2 \times 45 + 15 = 105^{\circ}$ $c = 3a + 5 = 3 \times 45 + 5 = 140^{\circ}$ Hence $\angle b$ and $\angle c$ are 105° and 140°

Question 9.

Three angles of a quadrilateral are equal. If the fourth angle is 69°; find the measure of equal angles.

Solution:

Let each equal angle be x° x + x + x + 69° = 360°

3x = 360°- 69 3x = 291 x = 97° Each, equal angle = 97°

Question 10.

In quadrilateral PQRS, $\angle P : \angle Q : \angle R : \angle S = 3 : 4 : 6 : 7$.

Calculate each angle of the quadrilateral and then prove that PQ and SR are parallel to each other

(i) Is PS also parallel to QR?

(ii) Assign a special name to quadrilateral PQRS.

Solution:

Question 11.

Use the informations given in the following figure to find the value of x.

Take A, B, C, D as the vertices of Quadrilateral and BA is produced to E (say). Since $\angle EAD = 70^{\circ}$ $\angle DAB = 180^{\circ} - 70^{\circ} = 110^{\circ}$ [EAB is a straight line and AD stands on it $\angle EAD + \angle DAB = 180^{\circ}$] $110^{\circ} + 80^{\circ} + 56^{\circ} + 3x - 6^{\circ} = 360^{\circ}$ [sum of interior angles of a quadrilateral = 360°] $3x = 360^{\circ} - 110^{\circ} - 80^{\circ} - 56^{\circ} + 6^{\circ}$ $3x = 360^{\circ} - 240^{\circ} = 120^{\circ}$ $x = 40^{\circ}$

Question 12.

The following figure shows a quadrilateral in which sides AB and DC are parallel. If $\angle A$: $\angle D = 4 : 5$, $\angle B = (3x - 15)^{\circ}$ and $\angle C = (4x + 20)^{\circ}$, find each angle of the quadrilateral ABCD.

Solution:

```
Let \angle A = 4x

\angle D = 5x

Since \angle A + \angle D = 180^{\circ} [AB||DC]

4x + 5x = 180^{\circ}

=> 9x = 180^{\circ}

=> x = 20^{\circ}

\angle A = 4 (20) = 80^{\circ},

\angle D = 5 (20) = 100^{\circ}

Again \angle B + \angle C = 180^{\circ} [AB||DC]

3x - 15^{\circ} + 4x + 20^{\circ} = 180^{\circ}

7x = 180^{\circ} - 5^{\circ}

=> 7x = 175^{\circ}

=> x = 25^{\circ}

\angle B = 75^{\circ} - 15^{\circ} = 60^{\circ}

and \angle C = 4 (25) + 20 = 100^{\circ} + 20^{\circ} = 120^{\circ}
```

Question 13.

Use the following figure to find the value of x

Solution:

The sum of exterior angles of a quadrilateral

Question 14.

ABCDE is a regular pentagon. The bisector of angle A of the pentagon meets the side CD in point M. Show that $\angle AMC = 90^{\circ}$.

Given : ABCDE is a regular pentagon.

The bisector $\angle A$ of the pentagon meets the side CD at point M. To prove : $\angle AMC = 90^{\circ}$ Proof: We know that, the measure of each interior angle of a regular pentagon is 108°. $\angle BAM = \frac{1}{2} \times 108^{\circ} = 54^{\circ}$ Since, we know that the sum of a quadrilateral is 360° In quadrilateral ABCM, we have $\angle BAM + \angle ABC + \angle BCM + \angle AMC = 360^{\circ}$ $54^{\circ} + 108^{\circ} + 108^{\circ} + \angle AMC = 360^{\circ}$ $\angle AMC = 360^{\circ} - 270^{\circ}$ $\angle AMC = 90^{\circ}$

Question 15.

In a quadrilateral ABCD, AO and BO are bisectors of angle A and angle B respectively. Show that:

$$\angle AOB = \frac{1}{2} (\angle C + \angle D)$$

Solution:

Given : AO and BO are the bisectors of $\angle A$ and $\angle B$ respectively. $\angle 1 = \angle 4$ and $\angle 3 = \angle 5$ (i)


```
To prove : \angle AOB = \frac{1}{2} (\angle C + \angle D)

Proof: In quadrilateral ABCD

\angle A + \angle B + \angle C + \angle D = 360^{\circ}

\frac{1}{2} (\angle A + \angle B + \angle C + \angle D) = 180^{\circ} ......(ii)

Now in \triangle AOB

\angle 1 + \angle 2 + \angle 3 = 180^{\circ} ......(iii)

Equating equation (ii) and equation (iii), we get

\angle 1 + \angle 2 + \angle 3 = \angle A + \angle B + \frac{1}{2} (\angle C + \angle D)

\angle 1 + \angle 2 + \angle 3 = \angle 1 + \angle 3 + \frac{1}{2} (\angle C + \angle D)

\angle 1 + \angle 2 + \angle 3 = \angle 1 + \angle 3 + \frac{1}{2} (\angle C + \angle D)

\angle 2 = \frac{1}{2} (\angle C + \angle D)

\angle AOB = \frac{1}{2} (\angle C + \angle D)

Hence proved.
```