Chapter 6. Simultaneous (Linear) Equations (Including Problems)

Exercise 6(A)

Solution 1:

$$8x + 5y = 9...(1)$$

 $3x + 2y = 4...(2)$

$$(2) \Rightarrow y = \frac{9 - 8x}{5}$$

Putting this value of y in (2)

$$3x + 2\left(\frac{9-8x}{5}\right) = 4$$

$$15x + 18 - 16x = 20$$

$$x = -2$$

From (1)
$$y = \left(\frac{9-8x}{5}\right) = \frac{9-8(-2)}{5} = \frac{25}{5} = 5$$

$$y = 5$$

Solution 2:

$$2x - 3y = 7...(1)$$

$$5x + y = 9...(2)$$

$$(2) \Rightarrow y = 9 - 5x$$

Putting this value of y in (1)

$$2x - 3(9 - 5x) = 7$$

$$2x - 27 + 15x = 7$$

$$17x = 34$$

$$x = 2$$

$$y = 9 - 5(2)$$

$$v = -1$$

Solution 3:

$$2x + 3y = 8...(1)$$

 $2x = 2 + 3y...(2)$
(2) $\Rightarrow 2x = 2 + 3y$
Putting this value of $2x$ in (1)
 $2 + 3y + 3y = 8$
 $6y = 6$
 $y = 1$
From (2) $2x = 2 + 3$ (1)
 $x = \frac{5}{2}$
 $x = 2.5$

Solution 4:

The given pair of linear equations are

$$0.2x + 0.1y = 25....(i)$$

$$2(x-2)-1.6y=116....(ii)$$

Consider equation (i)

$$0.2x + 0.1y = 25$$

$$\Rightarrow$$
 0.2 $x = 25 - 0.1y$

$$\Rightarrow x = \frac{(25 - 0.1y)}{0.2}....(iii)$$

Substitute the value of x from equation (iii) in equation (ii).

$$2(x-2)-1.6y=116$$

$$\Rightarrow 2\left(\frac{(25-0.1y)}{0.2}-2\right)-1.6y=116$$

$$\Rightarrow 10(25 - 0.1y) - 4 - 1.6y = 116$$

$$\Rightarrow$$
 250 - y - 4 - 1.6y = 116

$$\Rightarrow$$
 -2.6 $y = -130$

$$\Rightarrow y = 50....(iv)$$

Substitute the value of y from equation (iv) in equation (iii).

$$x = \frac{(25 - 0.1y)}{0.2}$$

$$\Rightarrow x = \frac{(25 - 0.1(50))}{0.2}$$

$$\Rightarrow x = \frac{(25 - 5)}{0.2}$$

$$\Rightarrow x = 100$$

 \therefore Solution is x = 100 and y = 50.

Solution 5:

$$6x = 7y + 7...(1)$$

$$7y - x = 8...(2)$$

$$(2) \Rightarrow x = 7y - 8$$
Putting this value of x in (1)
$$6(7y - 8) = 7y + 7$$

$$42y - 48 = 7y + 7$$

$$35y = 55$$

$$y = \frac{11}{7}$$
From (2) x = $7(\frac{11}{7}) - 8$
x = 3

Solution 6:

y = 4x -7...(1)

$$16x-5y = 25...(2)$$

(1) $\Rightarrow y = 4x - 7$
Putting this value of y in (2)
 $16x-5$ (4x - 7) = 25
 $16x-20x+35=25$
 $-4x = -10$
 $x = \frac{5}{2}$
From (1)
 $y = 4\left(\frac{5}{2}\right)-7$
 $\Rightarrow y = 10-7$
 $\Rightarrow y = 7$
y = 10-7=3
Solution is $x = \frac{5}{2}$ and $y = 3$.

Solution 7:

2x + 7y = 39...(1)

$$3x + 5y = 31...(2)$$

$$(1) \Rightarrow x = \frac{39 - 7y}{2}$$
Putting this value of x in (2)
$$3\left(\frac{39 - 7y}{2}\right) + 5y = 31$$

$$117 - 21y + 10y = 62$$

$$-11y = -55$$

$$y = 5$$
From (1) $x = \frac{39 - 7(5)}{2}$

$$x = \frac{4}{2}$$

$$x = 2$$

Solution 8:

The given pair of linear equations are

$$1.5x + 0.1y = 6.2....(i)$$

$$3x - 0.4y = 11.2...(ii)$$

Consider equation (i)

$$1.5x + 0.1y = 6.2$$

$$\Rightarrow 1.5x = 6.2 - 0.1y$$

$$\Rightarrow x = \frac{\left(6.2 - 0.1y\right)}{1.5}....(iii)$$

Substitute the value of x from equation (iii) in equation (ii).

$$3x - 0.4y = 11.2$$

$$\Rightarrow 3\left(\frac{(6.2 - 0.1y)}{1.5}\right) - 0.4y = 11.2$$

$$\Rightarrow 2(6.2 - 0.1y) - 0.4y = 11.2$$

$$\Rightarrow$$
 12.4 - 0.2y - 0.4y = 11.2

$$\Rightarrow$$
 -0.6 $y =$ -1.2

$$\Rightarrow y = 2.....(iv)$$

Substitute the value of y from equation (iv) in equation (iii).

$$x = \frac{(6.2 - 0.1y)}{1.5}$$

$$\Rightarrow x = \frac{\left(6.2 - 0.1(2)\right)}{1.5}$$

$$\Rightarrow x = \frac{(6.2 - 0.2)}{1.5}$$

$$\Rightarrow x = 4$$

Solution is x = 4 and y = 2.

Given equations are

$$2(x-3)+3(y-5)=0$$
(1)

$$5(x-1)+4(y-4)=0$$
(2)

From (1), we get

$$2x - 6 + 3y - 15 = 0$$

$$\Rightarrow$$
 2x - 21 + 3y = 0

$$\Rightarrow$$
 2x = 21 - 3y

$$\rightarrow 2x = 21 - 3$$

$$\Rightarrow x = \frac{21 - 3y}{2}$$

From (2), we get

$$5(x-1)+4(y-4)=0$$

$$\Rightarrow 5x - 5 + 4y - 16 = 0$$

$$\Rightarrow$$
 5x + 4y - 21 = 0(3)

Substituting $x = \frac{21 - 3y}{2}$ in (3), we get

$$5\left(\frac{21-3y}{2}\right) + 4y - 21 = 0$$

$$\Rightarrow \frac{105 - 15y}{2} + 4y - 21 = 0$$

$$\Rightarrow$$
 105 - 15y + 8y - 42 = 0

$$\Rightarrow$$
 -7y + 63 = 0

$$\Rightarrow$$
 7y = 63

$$\Rightarrow$$
 $v = 9$

Substituting
$$y = 9$$
 in $x = \frac{21 - 3y}{2}$, we get

$$x = \frac{21 - 3(9)}{2} = \frac{21 - 27}{2} = \frac{-6}{2} = -3$$

$$\therefore$$
 Solution is $x = -3$ and $y = 9$

Solution 10:

$$\frac{2x+1}{7} + \frac{5y-3}{3} = 12 \quad (given)$$

$$\Rightarrow \frac{3(2x+1)+7(5y-3)}{21} = 12$$

$$\Rightarrow 6x+3+35y-21=252$$

$$\Rightarrow 6x+35y=270$$

$$\Rightarrow 6x=270-35y$$

$$\Rightarrow x = \frac{270-35y}{6}$$

$$\frac{3x+2}{2} - \frac{4y+3}{9} = 13 \quad (given)$$

$$\Rightarrow \frac{9(3x+2)-2(4y+3)}{18} = 13$$

$$\Rightarrow 27x+18-8y-6=234$$

$$\Rightarrow 27x-8y+12=234$$

$$\Rightarrow 27x-8y=222 \quad(1)$$
Substituting $x = \frac{270-35y}{6}$ in (1), we get
$$27\left(\frac{270-35y}{6}\right)-8y=222$$

$$\Rightarrow 7290-945y-48y=1332$$

$$\Rightarrow -993y=-5958$$

$$\Rightarrow y=6$$
Substituting $y=6$ in $x = \frac{270-35y}{6}$, we get
$$x = \frac{270-35x6}{6} = \frac{270-210}{6} = \frac{60}{6} = 10$$

$$\therefore \text{ Solution is } x = 10 \text{ and } y=6$$

Exercise 6(B)

Solution 1:

$$13 + 2y = 9x...(1)$$

 $3y = 7x...(2)$
Multiplying equation no. (1) by 3 and (2) by 2, we get,
 $39 + 6y = 27x$...(1)
 $6y = 14x$...(2)
 $\frac{}{39 = 13x}$
 $x = 3$

From (2)
$$3y = 7(3)$$

 $y = 7$

Solution 2:

$$3x - y = 23...(1)$$

$$\frac{x}{3} + \frac{y}{4} = 4$$

$$4x + 3y = 48...(2)$$

Multiplying equation no. (1) by 3

$$9x - 3y = 69$$
 ...(3)

$$4x + 3y = 48$$

$$x = 9$$

From (1)

$$3(9) - y = 23$$

$$y = 27 - 23$$

$$y = 4$$

Solution 3:

The given pair of linear equations are

$$\frac{5y}{2} - \frac{x}{3} = 8$$

$$\Rightarrow -\frac{x}{3} + \frac{5y}{2} = 8....(i)$$
 [On simplifying]

$$\frac{y}{2} + \frac{5x}{3} = 12$$

$$\Rightarrow \frac{5x}{3} + \frac{y}{2} = 12....(ii)$$
 [On simplifying]

Multiply equation (i) by 5, we get:

$$-\frac{5x}{3} + \frac{25y}{2} = 40$$

$$\frac{5x}{3} + \frac{y}{2} = 12$$

[Equation (ii)]

[Adding]

$$\Rightarrow 13y = 52$$

$$\Rightarrow y = 4$$

Substituting y = 4 in equation (i), we get

$$-\frac{x}{3} + \frac{5(4)}{2} = 8$$

$$\Rightarrow -\frac{x}{3} = 8 - 10$$

$$\Rightarrow x = 6$$

:. Solution is x = 6 and y = 4.

Solution 4:

$$\frac{1}{5}(x-2) = \frac{1}{4}(1-y) \Rightarrow 4x + 5y = 13 \dots (1)$$
$$26x + 3y = -4 \dots (2)$$

Multiplying equation no. (1) by 3 and (2) by 5.

$$12x + 15y = 39$$
 ...(3)

$$130x + 15y = -20$$

$$\times = -\frac{59}{118}$$

$$x = -\frac{1}{2}$$

$$4\left(-\frac{1}{2}\right) + 5y = 13$$
$$5y = 13 + 2$$

Solution 5:

$$y = 2x - 6$$

$$y = 0$$

$$\Rightarrow 2x - y = 6 \qquad \dots (1)$$

y = 3

$$y = 0$$

$$\Rightarrow 2x - y = 6 \qquad \dots (1)$$

$$y = 2 \qquad \dots (2)$$

$$2x = 6$$

$$x = 3y = 0$$

Solution 6:

The given pair of linear equations are

$$\frac{x-y}{6} = 2(4-x)$$

$$\Rightarrow$$
 13x - y = 48....(i) [On simplifying]

$$2x + y = 3(x - 4)$$

$$\Rightarrow x - y = 12....(ii)$$
 [On simplifying]

Multiply equation (ii) by 13, we get:

$$13x - 13y = 156$$

$$13x - y = 48$$

$$\Rightarrow y = -9$$

Substituting y = -9 in equation (i), we get

$$13x - (-9) = 48$$

$$\Rightarrow 13x = 39$$

$$\Rightarrow x = 3$$

 \therefore Solution is x = 3 and y = -9.

Solution 7:

$$3 - (x - 5) = 4 + 2$$

$$2(x + y) = 4 - 3y$$

$$\Rightarrow$$
 -x - y = -6

$$\Rightarrow$$
 x + y = 6...(1)

$$2x + 5y = 4...(2)$$

Multiplying equation no. (1) by 2.

$$2x + 2y = 12$$

$$2x + 5y = 4$$

$$-3y = 8 \Rightarrow y = \frac{-8}{3}$$

From (1)

$$x - \frac{8}{3} = 6$$

$$x - \frac{8}{3} = 6$$
 $\Rightarrow x = \frac{26}{3}$

Solution 8:

$$2x - 3y - 3 = 0$$
$$\frac{2x}{3} + 4y + \frac{1}{2} = 0$$

$$\Rightarrow$$
 2x - 3y = 3...(1)
 \Rightarrow 4x + 24y = -3...(2)

Multiplying equation no. (1) by 8.

$$16x - 24y = 24$$

$$4x + 24y = -3$$

$$20x = 21$$
 $\Rightarrow x = \frac{21}{20}$

From (1)

$$2\left(\frac{21}{20}\right) - 3y = 3$$

$$-3y = 3 - \frac{21}{10} \Rightarrow y = \frac{-3}{10}$$

Solution 9:

$$13x + 11y = 70...(1)$$

$$11x + 13y = 74...(2)$$

$$24x + 24y = 144$$

$$x + y = 6...(3)$$

subtracting (2) from (1)

$$2x - 2y = -4$$

$$x - y = -2...(4)$$

$$x + y = 6...(3)$$

$$2x = 4$$
 $\Rightarrow x = 2$

From (3)

$$2 + y = 6 \Rightarrow y = 4$$

Solution 10:

Subtracting (2) from (1)

$$-12x + 12y = -12$$

$$-x + y = -1 \qquad ...(4)$$

$$x + y = 3$$

$$2y = 2 \Rightarrow y = 1$$

From (3)
$$x+1=3 \Rightarrow x=2$$

Solution 11:

$$2x + y = 23...(1)$$

$$4x - y = 19...(2)$$

Adding equation (1) and (2) we get, 2x + y = 23

$$2x + y = 23$$

$$4x - y = 19$$

$$6x = 42 \Rightarrow x = 7$$

From (1)

$$2(7) + y = 23$$

 $y = 23 - 14$
 $\Rightarrow y = 9$
 $x - 3y = 7 - 3(9) = -20$

And
$$5y - 2x = 5(9) - 2(7) = 45 - 14 = 31$$

Solution 12:

Multiplying equation no. (1) by 12 and (2) by 7.

$$-84x + 120y = -48 \qquad ...(3)$$

$$84x + 126y = 7$$

$$246y = -41 \qquad \Rightarrow y = \frac{-1}{6}$$

From (1)

$$-7x + 10\left(\frac{-1}{6}\right) = -4$$

$$-7x = -4 + \frac{5}{3} \Rightarrow x = \frac{1}{3}$$

$$\therefore 4\left(\frac{1}{3}\right) + 6\left(\frac{-1}{6}\right) = \frac{1}{3} \text{ and } 8y - x = 8\left(\frac{-1}{6}\right) - \frac{1}{3} = \frac{-5}{3}$$

Solution 13:

(i)

The given pair of linear equations are

$$\frac{y+7}{5} = \frac{2y-x}{4} + 3x - 5$$

\$\Rightarrow\$ 55x + 6y = 128.....(i) [On simplifying]

$$\frac{7-5x}{2} + \frac{3-4y}{6} = 5y - 18$$

$$\Rightarrow 15x + 34y = 132....(ii) [On simplifying]$$

Multiply equation (i) by 3 and equation (ii) by 11, we get:

$$165x + 18y = 384$$

 $165x + 374y = 1452$
- - - - [Subtracting]
 $-356y = -1068$
 $\Rightarrow y = 3$

Substituting y = 3 in equation (i), we get 55x + 6(3) = 128

$$\Rightarrow 55x = 110$$

$$\Rightarrow x = 2$$

 \therefore Solution is x = 2 and y = 3.

The given pair of linear equations are

$$4x = 17 - \frac{x - y}{8}$$

$$\Rightarrow$$
 33x - y = 136.....(i) [On simplifying]

$$2y + x = 2 + \frac{5y + 2}{3}$$

$$\Rightarrow 3x + y = 8....(ii)$$
 [On simplifying]

Multiply equation (ii) by 11, we get:

$$33x + 11y = 88$$

$$33x - y = 136$$

$$\Rightarrow y = -4$$

Substituting y = -4 in equation (i), we get:

$$33x - (-4) = 136$$

$$\Rightarrow 33x = 132$$

$$\Rightarrow x = 4$$

 \therefore Solution is x = 4 and y = -4.

Solution 14:

Let x = 2 and y = 1 be a solution of the equation

$$2x + 3y = m.$$

$$\Rightarrow$$
 2(2) + 3(1) = m

$$\Rightarrow 4+3=m$$

$$\Rightarrow m = 7$$

 \therefore If x = 2 and y = 1 is the solution of the equation

$$2x + 3y = m$$
 then the value of m is 7.

Solution 15:

10% of x + 20% of y = 24

$$\Rightarrow$$
 0. 1x + 0.2y = 24.....(i) [On simplyfying]
3x - y = 20.....(ii)

Multiply equation (ii) by 0.2, we get:

$$0.6x - 0.2y = 4$$

 $0.1x + 0.2y = 24$ [Equation (i)]
 $+ + + +$ [Adding]
 $0.7x = 28$

Substituting x = 40 in equation (i), we get

$$0.1(40) + 0.2y = 24$$

$$\Rightarrow 0.2y = 20$$

$$\Rightarrow y = 100$$

 $\Rightarrow x = 40$

 \therefore Solution is x = 40 and y = 100.

Solution 16:

The value of expression mx - ny is 3 when x = 5 and y = 6. $\Rightarrow 5m - 6n = 3....(i)$

The value of expression mx - ny is 8 when x = 6 and y = 5. $\Rightarrow 6m - 5n = 8....(ii)$

Multiply equation (i) by 6 and equation (ii) by 5, we get:

$$30m - 36n = 18$$
 [Equation (i)]
 $30m - 25n = 40$ [Equation (ii)]
 $- + -$ [Subtracting]
 $- 11n = -22$
 $\Rightarrow n = 2$

Substituting n = 2 in equation (i), we get

$$5m - 6(2) = 3$$

$$\Rightarrow 5m = 15$$

$$\Rightarrow m = 3$$

 \therefore Solution is m = 3 and n = 2.

Solution 17:

11(x-5)+10(y-2)+54=0 (given)
⇒11x-55+10y-20+54=0
⇒11x+10y-21=0
⇒11x+10y=21(1)

$$7(2x-1)+9(3y-1)=25$$
 (given)
⇒14x-7+27y-9=25
⇒14x+27y=41(2)
Multiplying equation (1) by 27 and equation (2) by 10, we get $297x+270y=567$ (3)
 $140x+270y=410$ (4)
Subtracting equation (4) from equation (3), we get $157x=157$
⇒x=1
Substituting x = 1 in equation (1), we get $11x+10y=21$
⇒10y=10
⇒y=1
∴ Solution set is x = 1 and y = 1.

Solution 18:

$$\frac{7+x}{5} - \frac{2x-y}{4} = 3y-5 \quad (given)$$
⇒ $4(7+x) - 5(2x-y) = 20(3y-5)$
⇒ $28+4x-10x+5y=60y-100$
⇒ $-6x-55y=-128 \quad(1)$

$$\frac{5y-7}{2} + \frac{4x-3}{6} = 18-5x \quad (given)$$
⇒ $3(5y-7) + 4x-3 = 6(18-5x)$
⇒ $15y-21+4x-3=108-30x$
⇒ $34x+15y=132 \quad(2)$
Multiplying equation (1) by 34 and equation (2) by 6, we get $-204x-1870y=-4352 \quad(3)$
 $204x+90y=792 \quad(4)$
Adding equations (3) and (4), we get $-1780y=-3560$
⇒ $y=2$
Substituting $y=2$ in equation (1), we get $-6x-55x2=-128$
⇒ $-6x-110=-128$
⇒ $-6x=18$
⇒ $x=3$
∴ Solution is $x=3$ and $y=2$

Solution 19:

$$4x + \frac{x - y}{9} = 17$$
 (given)

$$\Rightarrow$$
 32× + × - v = 136

$$\Rightarrow 33x - y = 136 \dots (1)$$

$$2y + x - \frac{5y + 2}{3} = 2$$
 (given)

$$\Rightarrow$$
 6y + 3x - 5y - 2 = 6

$$\Rightarrow$$
 3x + y = 8(2)

Adding equations (1) and (2), we get

$$36x = 144$$

$$\Rightarrow x = 4$$

Substituting x = 4 in equation (2), we get

$$3 \times 4 + y = 8$$

$$\Rightarrow$$
 12 + y = 8

$$\Rightarrow$$
 y = -4

Exercise 6(C)

Solution 1:

Given equations are 4x + 3y = 17 and 3x - 4y + 6 = 0

Comparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have

$$a_1 = 4$$
, $b_1 = 3$, $c_1 = -17$ and $a_2 = 3$, $b_2 = -4$, $c_2 = 6$

Now,
$$x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$$
 and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$

$$\Rightarrow x = \frac{3 \times 6 - (-4) \times (-17)}{4 \times (-4) - 3 \times 3} \text{ and } y = \frac{-17 \times 3 - 6 \times 4}{4 \times (-4) - 3 \times 3}$$

$$\Rightarrow x = \frac{18 - 68}{-16 - 9}$$
 and $y = \frac{-51 - 24}{-16 - 9}$

$$\Rightarrow x = \frac{-50}{-25} \text{ and } y = \frac{-75}{-25}$$

$$\Rightarrow$$
 x = 2 and y = 3

Solution 2:

Given equations are 3x + 4y = 11 and 2x + 3y = 8Comparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have $a_1 = 3$, $b_1 = 4$, $c_1 = -11$ and $a_2 = 2$, $b_2 = 3$, $c_2 = -8$ Now, $x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$ and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$ $\Rightarrow x = \frac{4x(-8) - 3x(-11)}{3x3 - 2x4}$ and $y = \frac{-11x2 - (-8)x3}{3x3 - 2x4}$ $\Rightarrow x = \frac{-32 + 33}{9 - 8}$ and $y = \frac{-22 + 24}{9 - 8}$ $\Rightarrow x = 1$ and y = 2

Solution 3:

Given equations are 6x + 7y - 11 = 0 and 5x + 2y = 13Comparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have $a_1 = 6$, $b_1 = 7$, $c_1 = -11$ and $a_2 = 5$, $b_2 = 2$, $c_2 = -13$ Now, $x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$ and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$ $\Rightarrow x = \frac{7 \times (-13) - 2 \times (-11)}{6 \times 2 - 5 \times 7} \text{ and } y = \frac{-11 \times 5 - (-13) \times 6}{6 \times 2 - 5 \times 7}$ $\Rightarrow x = \frac{-91 + 22}{12 - 35} \text{ and } y = \frac{-55 + 78}{12 - 35}$ $\Rightarrow x = \frac{-69}{-23} \text{ and } y = \frac{23}{-23}$ $\Rightarrow x = 3 \text{ and } y = -1$

Solution 4:

Given equations are 5x + 4y + 14 = 0 and 3x = -10 - 4yComparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have $a_1 = 5$, $b_1 = 4$, $c_1 = 14$ and $a_2 = 3$, $b_2 = 4$, $c_2 = 10$ Now, $x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$ and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$ $\Rightarrow x = \frac{4 \times 10 - 4 \times 14}{5 \times 4 - 3 \times 4}$ and $y = \frac{14 \times 3 - 10 \times 5}{5 \times 4 - 3 \times 4}$ $\Rightarrow x = \frac{40 - 56}{20 - 12}$ and $y = \frac{42 - 50}{20 - 12}$ $\Rightarrow x = \frac{-16}{8}$ and $y = \frac{-8}{8}$ $\Rightarrow x = -2$ and y = -1

Solution 5:

Given equations are x - y + 2 = 0 and 7x + 9y = 130Comparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have $a_1 = 1$, $b_1 = -1$, $c_1 = 2$ and $a_2 = 7$, $b_2 = 9$, $c_2 = -130$ Now, $x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$ and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$ $\Rightarrow x = \frac{-1 \times (-130) - 9 \times 2}{1 \times 9 - 7 \times (-1)}$ and $y = \frac{2 \times 7 - (-130) \times 1}{1 \times 9 - 7 \times (-1)}$ $\Rightarrow x = \frac{130 - 18}{9 + 7}$ and $y = \frac{14 + 130}{9 + 7}$ $\Rightarrow x = \frac{112}{16}$ and $y = \frac{144}{16}$ $\Rightarrow x = 7$ and y = 9

Solution 6:

Given equations are 4x - y = 5 and 5y - 4x = 7Comparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have $a_1 = 4$, $b_1 = -1$, $c_1 = -5$ and $a_2 = -4$, $b_2 = 5$, $c_2 = -7$ Now, $x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$ and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$ $\Rightarrow x = \frac{-1 \times (-7) - 5 \times (-5)}{4 \times 5 - (-4) \times (-1)}$ and $y = \frac{(-5) \times (-4) - (-7) \times 4}{4 \times 5 - (-4) \times (-1)}$ $\Rightarrow x = \frac{7 + 25}{20 - 4}$ and $y = \frac{20 + 28}{20 - 4}$ $\Rightarrow x = \frac{32}{16}$ and $y = \frac{48}{16}$ $\Rightarrow x = 2$ and y = 3

Solution 7:

Given equations are 4x - 3y = 0 and 2x + 3y = 18Comparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have $a_1 = 4$, $b_1 = -3$, $c_1 = 0$ and $a_2 = 2$, $b_2 = 3$, $c_2 = -18$ Now, $x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$ and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$ $\Rightarrow x = \frac{-3x(-18) - 3x0}{4x3 - 2x(-3)}$ and $y = \frac{0 \times 2 - (-18) \times 4}{4x3 - 2x(-3)}$ $\Rightarrow x = \frac{54 - 0}{12 + 6}$ and $y = \frac{0 + 72}{12 + 6}$ $\Rightarrow x = \frac{54}{18}$ and $y = \frac{72}{18}$ $\Rightarrow x = 3$ and y = 4

Solution 8:

Given equations are 8x + 5y = 9 and 3x + 2y = 4Comparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have $a_1 = 8$, $b_1 = 5$, $c_1 = -9$ and $a_2 = 3$, $b_2 = 2$, $c_2 = -4$ Now, $x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$ and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$ $\Rightarrow x = \frac{5x(-4) - 2x(-9)}{8x2 - 3x5}$ and $y = \frac{-9x3 - (-4)x8}{8x2 - 3x5}$ $\Rightarrow x = \frac{-20 + 18}{16 - 15}$ and $y = \frac{-27 + 32}{16 - 15}$ $\Rightarrow x = \frac{-2}{1}$ and $y = \frac{5}{1}$ $\Rightarrow x = -2$ and y = 5

Solution 9:

Given equations are 4x - 3y - 11 = 0 and 6x + 7y - 5 = 0Comparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have $a_1 = 4$, $b_1 = -3$, $c_1 = -11$ and $a_2 = 6$, $b_2 = 7$, $c_2 = -5$ Now, $x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$ and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$ $\Rightarrow x = \frac{-3 \times (-5) - 7 \times (-11)}{4 \times 7 - 6 \times (-3)}$ and $y = \frac{-11 \times 6 - (-5) \times 4}{4 \times 7 - 6 \times (-3)}$ $\Rightarrow x = \frac{15 + 77}{28 + 18}$ and $y = \frac{-66 + 20}{28 + 18}$ $\Rightarrow x = \frac{92}{46}$ and $y = \frac{-46}{46}$ $\Rightarrow x = 2$ and y = -1

Solution 10:

Given equations are 4x + 6y = 15 and 3x - 4y = 7Comparing with $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, we have $a_1 = 4$, $b_1 = 6$, $c_1 = -15$ and $a_2 = 3$, $b_2 = -4$, $c_2 = -7$ Now, $x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$ and $y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$

Now,
$$x = \frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1}$$
 and $y = \frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1}$

$$\Rightarrow x = \frac{6 \times (-7) - (-4) \times (-15)}{4 \times (-4) - 3 \times 6}$$
 and $y = \frac{-15 \times 3 - (-7) \times 4}{4 \times (-4) - 3 \times 6}$

$$\Rightarrow x = \frac{-42 - 60}{-16 - 18}$$
 and $y = \frac{-45 + 28}{-16 - 18}$

$$\Rightarrow x = \frac{-42 - 60}{-16 - 18} \text{ and } y = \frac{-43 + 26}{-16 - 18}$$

$$\Rightarrow x = \frac{-102}{-34} \text{ and } y = \frac{-17}{-34}$$

$$\Rightarrow$$
 x = 3 and y = $\frac{1}{2}$

Exercise 6(D)

Solution 1:

$$\frac{9}{x} - \frac{4}{y} = 8$$
 ...(1)

$$\frac{13}{x} + \frac{7}{y} = 101$$
 ...(2)

Multiplying equation no. (1) by 7 and (2) by 4.

$$\frac{63}{x} - \frac{28}{y} = 56$$
 ...(3)

$$\frac{52}{x} + \frac{28}{y} = 404$$
 ...(4)

$$\frac{115}{x} = 460$$

$$x = \frac{115}{460} \implies x = \frac{1}{4}$$

From (1)

$$9 \times \left(\frac{4}{1}\right) - \frac{4}{y} = 8$$

$$-\frac{4}{y} = -28 \implies y = \frac{1}{7}$$

Solution 2:

$$\frac{3}{x} + \frac{2}{y} = 10$$
(i)

$$\frac{9}{x} - \frac{7}{y} = 10.5$$
(ii)

Multiplying equation (i) by 3, we get

$$\frac{9}{x} + \frac{6}{y} = 30$$
(iii)

Subtracting (ii) from (iii), we get

$$\frac{13}{V} = 19.5$$

$$\Rightarrow y = \frac{13}{19.5} = \frac{2}{3}$$

From (i),

$$\frac{3}{x} + \frac{2 \times 3}{2} = 10$$

$$\Rightarrow \frac{3}{x} + 3 = 10$$

$$\Rightarrow \frac{3}{x} = 7$$

$$\Rightarrow \chi = \frac{3}{7}$$

Solution 3:

$$5x + \frac{8}{v} = 19$$
(i)

$$3x - \frac{4}{y} = 7$$
(ii)

Multiplying equation (ii) by 2, we get

$$6x - \frac{8}{y} = 14$$
(iii)

Adding (i) and (iii), we get

$$11x = 33$$

$$\Rightarrow x = 3$$

Substituting x = 3 in equation 91), we get

$$5(3) + \frac{8}{y} = 19$$

$$\Rightarrow \frac{8}{y} = 19 - 15$$

$$\Rightarrow$$
 y = $\frac{8}{4}$ = 2

Solution 4:

$$4x + \frac{6}{v} = 15$$
(i)

$$3x - \frac{4}{v} = 7$$
(ii)

Multiplying (i) by 4 and (ii) by 6

$$16x + \frac{24}{y} = 60$$
(iii)

$$18x - \frac{24}{v} = 42$$
(iv)

Adding (iii) and (iv), we get

$$34x = 102$$

$$\Rightarrow x = 3$$

Substituting x = 3 in (i), we get

$$4(3) + \frac{6}{v} = 15$$

$$\Rightarrow \frac{6}{v} = 15 - 12$$

$$\Rightarrow$$
 y = $\frac{6}{3}$ = 2

Now, v = ax - 2

$$\Rightarrow$$
 2 = a(3) - 2

$$\Rightarrow 2 = 3a - 2$$

$$\Rightarrow a = \frac{4}{3} = 1\frac{1}{3}$$

Solution 5:

$$\frac{3}{x} - \frac{2}{v} = 0$$
 ...(1)

$$\frac{2}{x} + \frac{5}{v} = 19$$
 ...(2)

Multiplying equation no. (1) by 5 and (2) by 2.

$$\frac{15}{x} - \frac{10}{y} = 0$$
 ...(3)

$$\frac{\frac{4}{x} + \frac{10}{y} = 38}{\frac{19}{x} = 38} \qquad \dots (4)$$

$$\frac{19}{x} = 38 \qquad \Rightarrow x = \frac{1}{2}$$

From (1)
$$3\left(\frac{1}{2}\right) - \frac{2}{y} = 0 \implies y = \frac{1}{3}$$

$$y = ax + 3$$

$$\frac{1}{3} = a\left(\frac{1}{2}\right) + 3$$

$$\frac{a}{2} = \frac{-8}{3} \Rightarrow a = \frac{-16}{3}$$

Solution 6:

(i)

$$\frac{20}{x+y} + \frac{3}{x-y} = 7$$
 ...(1)

$$\frac{8}{x+y} - \frac{15}{x+y} = 5$$
 ...(2)

Multiplying equation no. (1) by 8 and (2) by 3.

$$\frac{160}{x+y} + \frac{24}{x-y} = 56$$
 ...(3)

$$\frac{-45}{x+y} + \frac{24}{x-y} = 15$$
 ...(4)

$$\frac{-}{205} = 41$$

$$x + y = 5$$
 ...(5)

From (1)

$$\frac{20}{5} + \frac{3}{x - y} = 7$$

$$\frac{x-\lambda}{3} = 3$$

$$x - y = 1$$
 ...(6)

$$x + y = 5$$
 ...(5)

$$\frac{x - y = 1}{2x = 6} \dots (6)$$

$$x = 3$$

from (5)

$$3 + y = 5 \Rightarrow y = 2$$

Let
$$a = 3x + 4y$$
 and $b = 3x - 2y$

$$\therefore \frac{34}{3x + 4y} + \frac{15}{3x - 2y} = 5$$

$$\Rightarrow \frac{34}{a} + \frac{15}{b} = 5$$
...(i)

$$\frac{25}{3x-2y} - \frac{8.50}{3x+4y} = 4.5$$

$$\Rightarrow -\frac{8.50}{a} + \frac{25}{b} = 4.5...(ii)$$

Multiply equation (ii)by 4, we get :

$$-\frac{34}{a} + \frac{100}{b} = 18$$

$$\frac{34}{a} + \frac{15}{b} = 5$$
 [Equation (i)]

$$\frac{+}{\frac{115}{5}} = 23$$

[Adding]

$$\Rightarrow$$
 b = 5

$$\Rightarrow$$
 3x - 2y = 5....(iii)

Substituting b = 5 in equation (i), we get

$$\frac{34}{a} + \frac{15}{5} = 5$$

$$\Rightarrow$$
 2a = 34

$$\Rightarrow a = 17$$

$$\Rightarrow 3x + 4y = 17.....(iv)$$

Subtracting equation (iv)from equation (iii), we get::

$$3x - 2y = 5$$

$$3x + 4y = 17$$

$$\frac{-}{-}$$
 6v = $-$ 12

$$\Rightarrow$$
 y = 2

SubStituting y = 2 in equation (iii), we get

$$3x - 2(2) = 5$$

$$\Rightarrow 3x = 9$$

$$\Rightarrow x = 3$$

∴ Solution is
$$x = 3$$
 and $y = 2$.

Solution 7:

$$x + y = 2xy$$

$$x - y = 6xy$$

$$2x = 8xy$$

$$2 = 8y$$

$$y = \frac{1}{4}$$

From (1)

$$\times + \frac{1}{4} = 2 \times \left(\frac{1}{4}\right)$$

$$\frac{1}{2} \times = \frac{-1}{4}$$

$$x = \frac{-1}{2}$$

$$x + y = 7xy...(1)$$

$$2x - 3 = -xy ...(2)$$

Multiplying equation no. (1) by 3.

$$3x + 3y = 21xy$$

$$2x - 3y = -xy$$

$$y = \frac{1}{4}$$

From (1)

$$\times + \frac{1}{4} = 7 \times \left[\frac{1}{4}\right]$$

$$\frac{1}{4} = \frac{3}{4} \times$$

$$\times = \frac{1}{3}$$

Solution 8:

Given equations are
$$\frac{a}{x} - \frac{b}{v} = 0$$
 and $\frac{ab^2}{x} + \frac{a^2b}{v} = a^2 + b^2$

Taking
$$\frac{1}{x} = u$$
 and $\frac{1}{v} = v$, the above system of equations become

$$au - bv + 0 = 0$$

$$ab^{2}u + a^{2}bv - (a^{2} + b^{2}) = 0$$

By cross-multiplication, we have

$$\frac{u}{-b \times [-(a^2 + b^2)] - a^2b \times 0} = \frac{-v}{a \times [-(a^2 + b^2)] - ab^2 \times 0} = \frac{1}{a \times a^2b - ab^2 \times (-b)}$$

$$\Rightarrow \frac{u}{b(a^2 + b^2)} = \frac{-v}{-a(a^2 + b^2)} = \frac{1}{a^3b + ab^3}$$

$$\frac{1}{b(a^2 + b^2)} = \frac{1}{-a(a^2 + b^2)} = \frac{1}{a^3b + ab^3}$$

$$\Rightarrow \frac{\mathsf{u}}{\mathsf{b}(\mathsf{a}^2+\mathsf{b}^2)} = \frac{\mathsf{v}}{\mathsf{a}(\mathsf{a}^2+\mathsf{b}^2)} = \frac{1}{\mathsf{a}\mathsf{b}(\mathsf{a}^2+\mathsf{b}^2)}$$

$$\Rightarrow u = \frac{b(a^2 + b^2)}{ab(a^2 + b^2)} \quad \text{and} \quad v = \frac{a(a^2 + b^2)}{ab(a^2 + b^2)}$$

$$\Rightarrow$$
 u = $\frac{1}{a}$ and v = $\frac{1}{b}$

$$\Rightarrow \frac{1}{x} = \frac{1}{a}$$
 and $\frac{1}{y} = \frac{1}{b}$

$$\Rightarrow x = a$$
 and $y = b$

Solution 9:

$$\frac{2xy}{x+y} = \frac{3}{2}$$

$$\Rightarrow \frac{x + y}{xy} = \frac{4}{3}$$

$$\Rightarrow \frac{1}{x} + \frac{1}{v} = \frac{4}{3} \quad \dots (1)$$

$$\frac{xy}{2x - y} = -\frac{3}{10}$$

$$\Rightarrow \frac{2x - y}{xy} = -\frac{10}{3}$$

$$\Rightarrow -\frac{1}{x} + \frac{2}{y} = -\frac{10}{3}$$
(2)

Let
$$\frac{1}{x} = u$$
 and $\frac{1}{v} = v$

Then, equations(1) and (2) become

$$u + v = \frac{4}{3}$$
 and $-u + 2v = -\frac{10}{3}$

$$\Rightarrow$$
 3u + 3v = 4 and - 3u + 6v = -10

Adding, we have

$$9v = -6$$

$$\Rightarrow$$
 v = $-\frac{6}{9}$ = $-\frac{2}{3}$

$$\Rightarrow \frac{1}{y} = -\frac{2}{3} \Rightarrow y = -\frac{3}{2}$$

Substituting $y = -\frac{3}{2}$ in (1), we have

$$\frac{1}{x} - \frac{2}{3} = \frac{4}{3}$$

$$\Rightarrow \frac{1}{x} = \frac{6}{3} = 2$$

$$\Rightarrow x = \frac{1}{2}$$

Hence,
$$x = \frac{1}{2}$$
 and $y = -\frac{3}{2}$

Solution 10:

Given equations are
$$\frac{3}{2x} + \frac{2}{3y} = -\frac{1}{3}$$
 and $\frac{3}{4x} + \frac{1}{2y} = -\frac{1}{8}$

Let
$$\frac{1}{x} = u$$
 and $\frac{1}{y} = v$

Then, the system of equations become

$$\frac{3}{2}u + \frac{2}{3}v = -\frac{1}{3}$$
 and $\frac{3}{4}u + \frac{1}{2}v = -\frac{1}{8}$

$$\Rightarrow \frac{9u + 4v}{6} = -\frac{1}{3} \text{ and } \frac{3u + 2v}{4} = -\frac{1}{8}$$

$$\Rightarrow$$
 27u + 12v = -6 and 24u + 16v = -4

$$\Rightarrow$$
 27u + 12v + 6 = 0 and 24u + 16v + 4 = 0

$$\Rightarrow \frac{u}{12 \times 4 - 16 \times 6} = \frac{-v}{27 \times 4 - 24 \times 6} = \frac{1}{27 \times 16 - 24 \times 12}$$

$$\Rightarrow \frac{\mathsf{u}}{48 - 96} = \frac{-\mathsf{v}}{108 - 144} = \frac{1}{432 - 288}$$

$$\Rightarrow \frac{\mathsf{u}}{-48} = \frac{-\mathsf{v}}{-36} = \frac{1}{144}$$

$$\Rightarrow \frac{\mathsf{u}}{-48} = \frac{\mathsf{v}}{36} = \frac{1}{144}$$

$$\Rightarrow$$
 u = $\frac{-48}{144}$ = $-\frac{1}{3}$ and v = $\frac{36}{144}$ = $\frac{1}{4}$

$$\Rightarrow \frac{1}{x} = -\frac{1}{3}$$
 and $\frac{1}{y} = \frac{1}{4}$

$$\Rightarrow$$
 x = -3 and y = 4

Exercise 6(E)

Solution 1:

Let the two numbers be x and y

According to the question,

$$\frac{x}{y} = \frac{2}{3}$$

$$3x - 2y = 0...(1)$$

Also,
$$\frac{x-2}{y-8} = \frac{3}{2}$$

$$2x - 3y = -20...(2)$$

Multiplying equation no. (1) by 2 and (2) by 3 and substracting

$$6x - 4y = 0$$

$$6x - 9v = -60$$

$$\frac{- + +}{5y = 60}$$

$$v = 12$$

From (1), we get

$$3x - 2(12) = 0$$

$$x = \frac{24}{3}$$

$$x = 8$$

Thus, the numbers are 8 and 12.

Solution 2:

Let the smaller number be x

and the larger number bey.

According to the question,

$$\frac{\times}{v} = \frac{4}{7}$$

$$7x - 4y = 0...(1)$$

and,
$$3y + 2x = 59...(2)$$

Multiplying equation no. (1) by 3 and (2) by 4.and adding them

$$21x - 12y = 0$$
 ...(3)

$$8x + 12y = 236$$
 ...(4)

$$x = \frac{236}{29}$$

From (1)

$$7\left(\frac{236}{29}\right) = 4y$$

$$y = 7\left(\frac{59}{29}\right)$$

$$y = \frac{413}{29}$$

Hence, the number are $\frac{236}{29}$ and $\frac{413}{29}$.

Solution 3:

Let x be the greater number and y be the smaller number.

When the greater of the two numbers increased by 1 divides the sum of the numbers, the result is $\frac{3}{2}$.

$$\Rightarrow \frac{x+y}{(x+1)} = \frac{3}{2}$$

$$\Rightarrow 2x + 2y = 3(x+1)$$

$$\Rightarrow x - 2y = -3....(i)$$

When the difference of these number is divided by the smaller, the result is $\frac{1}{2}$.

$$\Rightarrow \frac{x - y}{y} = \frac{1}{2}$$

$$\Rightarrow 2x - 2y = y$$

$$\Rightarrow 2x - 3y = 0....(ii)$$

Multiply equation (i) by 2, we get:

$$2x - 4y = -6$$

$$2x - 3y = 0$$
 [Equation (ii)]
$$- + -$$
 [Subtracting]
$$- y = -6$$

$$\Rightarrow y = 6$$

Substituting y = 6 in equation (i), we get x - 2(6) = -3 $\Rightarrow x = 9$

: 9 is the greater number and 6 is the smaller number.

Solution 4:

Let the common multiple between the numbers be x.

So, the numbers are 4x and 5x.

According to the question,

$$\frac{4x - 30}{5x - 30} = \frac{1}{2}$$

$$\Rightarrow$$
 8x - 60 = 5x - 30

$$\Rightarrow$$
 3x = 30

$$\Rightarrow x = 10$$

So,
$$4x = 4(10) = 40$$
 and $5x = 5(10) = 50$

Thus, the numbers are 40 and 50.

Solution 5:

Let the numerator and denominator a fraction be x and y respectively. According to the question,

$$\frac{x+2}{y-1} = \frac{2}{3}$$

$$3x - 2y = -8...(1)$$

And.

$$\frac{x+1}{y+2} = \frac{1}{3}$$

$$3x - y = -1$$
 ...(2)

Now subtracting,

$$3x - y = -1$$
 ...(2)

$$3x - 2y = -8$$
 ...(1)

$$\frac{- + +}{y = 7}$$

$$3x - 2(7) = -8$$

$$3x = -8 + 14$$

$$x = 2$$

Required fraction =
$$\frac{2}{7}$$

Solution 6:

Let the numerator and denominator of a fraction be x and y respectively. Then the fraction will be $\frac{x}{y}$

According to the question,

$$x + y = 7...(1)$$

$$5y - 4x = 8...(2)$$

Multiplying equation no. (1) by 4 and add with (2),

$$4x + 4y = 28$$

$$\frac{-4x + 5y = 8}{9y = 36}$$

$$y = 4$$

From (1)

$$x + 4 = 7$$

$$x = 3$$

Required fraction =
$$\frac{3}{4}$$

Solution 7:

Let the numerator of the fraction be x and the denominator be y.

So, the fraction is $\frac{x}{y}$.

According to the question,

$$\frac{2\times}{y+1} = 1 \Rightarrow 2\times = y+1 \Rightarrow 2\times - y = 1...(i)$$

and
$$\frac{x+4}{2y} = \frac{1}{2} \Rightarrow 2x + 8 = 2y \Rightarrow 2x - 2y = -8...(ii)$$

Solving equations (i) and (ii), we get

$$y = 9$$

Putting the value of yin (i), we get

$$2x - (9) = 1 \Rightarrow 2x = 1 + 9 \Rightarrow x = 5$$

So, the fraction is $\frac{5}{9}$.

Solution 8:

Let the numerator of the fraction be \times and denominator of the fraction be y.

Then, the fraction = $\frac{x}{y}$

According to given condition, we have

$$\frac{x-5}{y-3} = \frac{1}{2}$$

$$\Rightarrow$$
 2x - 10 = y - 3

$$\Rightarrow$$
 2x -y = 7(i)

And,

$$x + 5 = y$$

$$\Rightarrow x - y = -5$$
(ii)

Subtracting (ii) from (i), we get

$$x = 12$$

$$\Rightarrow$$
 v = x + 5 = 12 + 5 = 17

hence, the fraction is $\frac{12}{17}$.

Solution 9:

Let the numerator of the fraction be \times and denominator of the fraction be y.

Then, the fraction = $\frac{x}{y}$

According to given condition, we have

$$\frac{x-5}{y-3} = \frac{1}{2}$$

$$\Rightarrow 2x - 10 = y - 3$$

$$\Rightarrow$$
 2x -y = 7(i)

And,

$$x + 5 = y$$

$$\Rightarrow x - y = -5$$
(ii)

Subtracting (ii) from (i), we get

$$x = 12$$

$$\Rightarrow$$
 y = x + 5 = 12 + 5 = 17

hence, the fraction is $\frac{12}{17}$.

Solution 10:

Let the digit at unit's place be x and the digit at ten's place be y.

Required no. = 10y + x

If the digit's are reversed

Reversed no. = 10x + v

According to the question,

$$x + y = 7...(1)$$

and.

$$10x + y - 2 = 2(10y + x)$$
.

$$8x - 19y = 2...(2)$$

Multiplying equation no. (1) by 19.

$$19x + 19y = 133$$
 ...

Now adding equation(2) and (3)

$$19x + 19y = 133$$

$$8x - 19y = 2$$

$$27x = 135$$

x = 5

From (1)

$$5 + y = 7$$

y = 2

Required number is

$$10(2) + 5$$

= 25.

Solution 11:

Let the digit at unit's place be x and the digit at ten's place be y.

Required no. = 10y + x

According to the question

$$y = 3x \Rightarrow 3x - y = 0...(1)$$

and,
$$10y + x + x = 32$$

$$10y + 2x = 32...(2)$$

Multiplying equation no. (1) by 10

$$30x - 10y = 0$$

Now adding (3) and (2)

$$30x - 10y = 0$$

$$2x + 10y = 32$$

$$32x = 32$$

$$\times = 1$$

From (1), we get

$$y = 3(1) = 3$$

Required no is

$$10(3) + 1 = 31$$

Solution 12:

Let the digit a unit's place be x and the digit at ten's place be y. Required no. = 10y + x.

According to the question,

$$y - 2x = 2$$

$$-2x + y = 2...(1)$$

and,

$$(10x + y) - 3(y + x) = 5$$

$$7x - 2y = 5...(2)$$

Multiplying equation no. (1) by 2.

$$-4x + 2y = 4$$
 ...(3)

Now adding (2) and (3)

$$-4x + 2y = 4$$

$$7x - 2y = 5$$

$$x = 3$$

From (1), we get

$$-2(3) + y = 2$$

$$\Rightarrow$$
 y = 8

Required number is

$$10(8) + 3 = 83.$$

Solution 13:

Let x be the number at the ten's place and y be the number at the unit's place.

So, the number is 10x + y.

Four times a certain two-digit number is seven times the number obtained on interchanging its digits.

$$\Rightarrow$$
 4(10× + y) = 7(10y + x)

$$\Rightarrow 40x + 4y = 70y + 7x$$

$$\Rightarrow 33x - 66y = 0$$

$$\Rightarrow x - 2y = 0 \dots (i)$$

If the difference between the digits is 4, then

$$\Rightarrow x - y = 4....(ii)$$

Subtracting equation (i) from equation (ii), we get:

$$x - y = 4$$

$$x - 2y = 0$$

[Equation (i)]

[Subtracting]

Substituting
$$y = 4$$
 in equation (i), we get

$$x - 2(4) = 0$$

$$\Rightarrow x = 8$$

: The number is 10x + y = 10(8) + 4 = 84.

Solution 14:

Let the tens digit of the number be x and the units digit be y.

So, the number is 10x + y.

The number obtained by interchanging the digits will be 10y+x.

According to question, we have

$$10x + y + 10y + x = 121$$

$$\Rightarrow$$
 11x + 11y = 121

$$\Rightarrow 11(x+y) = 121$$

$$\Rightarrow x + y = 11$$
(i)

And,

$$x-y=3$$
(ii)

Adding (i) and (ii), we get

$$2x = 14$$

$$\Rightarrow x = 7$$

$$\Rightarrow$$
 \vee = 11 - \times = 11 - 7 = 4

Hence, the number is 74.

Solution 15:

Let the tens digit of the number be x and the units digit be y.

So, the number is 10x + y.

According to the question,

$$10x + y = 8(x + y) \Rightarrow 2x = 7y...(i)$$

and
$$10x + y = 14(x - y) + 2$$
 or $10x + y = 14(y - x) + 2$

$$\Rightarrow$$
 4x - 15y = -2...(ii) or 24x - 13y = 2...(iii)

Solving (i) and (ii), we get

$$y = 2$$
 and $x = 7$

Solving (i) and (iii), we get

$$y = \frac{2}{71}$$

This is not possible, since y is a digit and cannot be in fraction form.

So the number is 72.

Exercise 6(F)

Solution 1:

Let present age of A = x years And present age of B = y years According to the question,

Five years ago.

$$x - 5 = 4(y - 5)$$

$$x - 4y = -15...(1)$$

Five years later.

$$x + 5 = 2(y + 5)$$

$$x - 2y = 5$$

Now subtracting (1)from(2)

$$x - 2y = 5$$
 ...(2)

$$x - 4y = -15$$
 ...(1)

$$\dots$$
 (1)

$$\frac{- + +}{2y = 20}$$

$$y = 10$$

From (1)

$$x - 4(10) = -15$$

$$x = 25$$

Present ages of A and B are 25 years and 10 years respectively.

Solution 2:

Let A's presentage be x years and B's present age be y years

According to the question

$$x = y + 20$$

$$x - y = 20...(1)$$

Five years ago,

$$x - 5 = 3(y - 5)$$

$$x - 3y = -10$$

Subtracting (1)from(2),

$$x - 3y = -10$$
 ...(2)

$$x - y = 20$$

$$\frac{- + -}{-2y = -30}$$

$$y = 15$$

$$x = 15 + 20$$

$$x = 35$$

Thus, present ages of A and B are 35 years and 15 years.

Solution 3:

Let the present age of the mother be x years and the present age of the daughter be y year.

According to the question,

$$x - 4 = 4(y - 4) \Rightarrow x - 4 = 4y - 16 \Rightarrow x - 4y = -12...(i)$$

and
$$x + 6 = 2\frac{1}{2}(y + 6) \Rightarrow x + 6 = \frac{5}{2}y + 15 \Rightarrow x - \frac{5}{2}y = 9...(ii)$$

Solving (i) and (ii), we get

$$y = 14 \text{ and } x = 44$$

Hence, the present age of the mother is 44 years and the present age of the daughter is 14 years.

Solution 4:

Let the present age of the man be x years and let the sum of the ages of his two children be y years.

According to the question,

$$x = 2y...(i)$$

and x + 20 = y + 40...(ii)...(Since he has two children)

Solving (i) and (ii), we get

$$2y + 20 = y + 40 \Rightarrow y = 20$$

So,
$$x = 2y \Rightarrow x = 40$$

Hence, the present age of the man is 40 years.

Solution 5:

Let A's annual in come = Rs.x and B's annual income = Rs. y According to the question,

$$\frac{x}{y} = \frac{3}{4}$$

$$4x - 3y = 0...(1)$$

and,
$$\frac{x - 5000}{y - 5000} = \frac{5}{7}$$

$$7x - 5y = 10000...(2)$$

Multiplying equation no. (1) by 7 and (2) by 4.and subtracting (4) from (3)

$$28x - 21y = 0$$
 ...(3)

$$28x - 20y = 40000 \dots (4)$$

$$\frac{- + -}{-y = -40000}$$

$$y = 40,000$$

From (1)

$$4x - 3(40000) = 0$$

$$x = 30000$$

Thus, A's income in Rs. 30,000 and B's income is Rs. 40,000.

Solution 6:

Let the no. of pass candidates be x and the no. of fail candidates be y. According to the question,

$$\frac{x}{y} = \frac{y}{1}$$

$$x - 4y = 0...(1)$$
and
$$\frac{x - 20}{y - 10} = \frac{5}{1}$$

$$x-5y = -30...(2)$$

 $x-4y = 0$...(1)
 $x-5y = -30$...(2)
 $\frac{-+}{y = 30}$

Solution 7:

Let the number of pencils with A = x and the number of pencils with B = y. If A gives 10 pencils to B, y + 10 = 2(x - 10) 2x - y = 30...(1)If B gives to pencils to A y - 10 = x + 10 x - y = -20 ...(2) 2x - y = 30 ...(1) - + - -x = -50x = 50

Solution 8:

Let the number of adults = x and the number of children = y According to the question, x + y = 1250...(1)and 75x + 25y = 612503x + y = 2450 ...(2) x + y = 1250 ...(1)

$$\frac{-}{2x} = 1200$$

x = 6000 From (1) 600 + y = 1250 y = 650 Thus, number of adults = 600 and the number of children = 650.

Solution 9:

Let the cost price of article A = Rs. x and the cost price of articles B = Rs. y According to the question,

$$(x + 5\% \text{ of } x) + (y + 7\% \text{ of } y) = 1167$$

$$\left(x + \frac{5}{100}x\right) + \left(y \frac{7}{100}y\right) = 1167$$

$$\frac{21x}{20} + \frac{107y}{100} = 1167$$

$$105x + 107y = 1167...(1)$$
and
$$\frac{107x}{100} + \frac{105y}{100} = 1165$$

$$x + y = 1100...(3)$$

subtracting (2)from (1)

$$-2x + 2y = 200$$

$$-x + y = 100$$
 ...(4)

$$x + y = 1100$$
 ...(3)
 $2y = 1200$

Thus, cost price of article A is Rs. 500. and that of article B is Rs. 600.

Solution 10:

Let Pooja's 1 day work = $\frac{1}{x}$ and Ritu's 1 day work = $\frac{1}{x}$

According the question,

$$\frac{1}{x} + \frac{1}{y} = \frac{7}{120}$$
 ...(1)

and,
$$\frac{1}{x} = \frac{3}{4} \cdot \frac{1}{y}$$

$$y = \frac{3}{4} \times ...(2)$$

Using the value of y from (2) in (1)

$$\frac{1}{x} + \frac{4}{3x} = \frac{7}{120}$$

$$\frac{1}{x} \left(\frac{7}{3}\right) = \frac{7}{120}$$

$$x = 40$$

From (2)
$$y = \frac{3}{4}(40) = 30$$

$$y = 30$$

Pooja will complete the work in 40 days and Ritu will complete the work in 30 days.

Exercise 6(G)

Solution 1:

Let Rohit has Rs. x and Ajay has Rs. y When Ajay gives Rs. 100 to Rohit x + 100 = 2(y - 100) x - 2y = -300...(1)When Rohit gives Rs. 10 to Ajay 6(x-10) = y + 10 6x - y = 70...(2)Multiplying equation no. (2) By 2. 12x - 2y = 140 ... (3) x - 2y = -300 - + + 11x = 440x = 40

From (1) 40 - 2y = -300 $\Rightarrow -2y = -340$ $\Rightarrow y = 170$

Thus, Rohit has Rs. 40 and Ajay has Rs. 170

Solution 2:

Let the digits in the tens place be x and the digit in the units place be y.

$$\therefore$$
 Number = $10x + y$

Number on reversing the digits = 10y + x

The difference between the digits = x - y or y - x

Given:
$$(10x + y) + (10y + x) = 99$$

$$\Rightarrow 11x + 11y = 99$$

$$\Rightarrow$$
 x + y = 9....(i)

$$x - y = 3.....(ii)$$

or
$$y - x = 3....(iii)$$

On solving equations (i) and (ii), we get

$$2x = 12 \Rightarrow x = 6$$

So,
$$y = 3$$

On solving equations (i) and (iii), we get

$$2y = 12 \Rightarrow y = 6$$

So,
$$x = 3$$

Number =
$$10x + y = 10(6) + 3 = 63$$

or Number =
$$10x + y = 10(3) + 6 = 36$$

:. Required number = 63 or 36.

Solution 3:

3Let the digit at ten's place be x

And the digit at unit's place be v

Required number = 10x + y

When the digits are interchanged.

Reversed number = 10v + x

According to the question,

$$7(10x + y) = 4(10y + x)$$

$$66x = 33y$$

$$2x - y = 0...(1)$$

Also,

$$y - x = 3$$
 ...(2)

$$\frac{-y + 2x = 0}{x = 3} \qquad \dots (1)$$

From
$$(1) 2(3) - y = 0$$

$$y = 6$$

Thus, Required number = 10(3) + 6 = 36

Solution 4:

Let, the fare of ticket for station A be Rs. x and the fare of ticket for station B be Rs. y According, to the question 2x + 3y = 77....(1) and 3x + 5y = 124...(2) Multiplying equation no. (1) by 3 and (2) by 2. 6x + 9y = 231 ...(1) 6x + 10y = 248 ...(4) - - - - - v = -17

Solution 5:

Let x be the number at the ten's place and y be the number at the unit's place. So the number is 10x + y.

The sum of digit of a two digit number is 11.

$$\Rightarrow x + y = 11....(i)$$

If the digit at ten's place is increased by 5 and the digit at unit place is decreased by 5, the digits of the number are found to be reversed.

$$\Rightarrow 10(x+5) + (y-5) = 10y + x$$

$$\Rightarrow 9x - 9y = -45$$

$$\Rightarrow x - y = -5....(ii)$$

Subtracting equation (i) from equation (ii), we get:

$$x - y = -5$$

 $x + y = 11$ [Equation (i)]
 $- - -$ [Subtracting]
 $- 2y = -16$
 $\Rightarrow y = 8$

Substituting y = 8 in equation (i), we get x + 8 = 11 $\Rightarrow x = 3$

:. The number is
$$10x + y = 10(3) + 8 = 38$$
.

Solution 6:

Let the quantity of 90% acid solution be x litres and The quantity of 97% acid solution be y litres According to the question, x + y = 21...(1) and 90% of x + 97% of y = 95% of 21 90x + 97y = 1995...(2) Multiplying equation no. (1) by 90, we get, 90x + 90y = 1890 ...(3) 90x + 97y = 1995 ...(2) - - + -7y = -105 y = 15

From
$$(1)x + 15 = 21$$

x = 6

Hence, 90% acid solution is 6 litres and 97% acid solution is 15 litres.

Solution 7:

Assume x kg of the first kind costing Rs. 250 per kg and y kg of the second kind costing Rs. 350 per kg sweets were bought.

It is estimated that 40 kg of sweets were needed.

$$\Rightarrow x + y = 40....(i)$$

The total budget for the sweets was Rs. 11,800.

$$\Rightarrow$$
 250x + 350y = 11,800....(ii)

Multiply equation (i) by 250, we get:

$$250x + 250y = 10000$$

 $250x + 350y = 11,800$ [Equation (ii)]
- - - [Subtracting]
 $\Rightarrow y = 18$

Substituting y = 18 in equation (i), we get x + 18 = 40 $\Rightarrow x = 22$

: 22 kgs of the first kind costing Rs. 250 per kg and 18 kgs of the second kind costing Rs. 350 per kg sweets were bought.

Solution 8:

Weight of Mr. Ahuja = x kg and weight of Mrs. Ahuja = y kg. After the dieting, x - 5 = y x - y = 5...(1) and, y - 4 = $\frac{7}{8}$ x 7x - 8y = -32...(2)Multiplying equation no. (1) by 7, we get 7x - 7y = 35 ...(3) Now subtracting (2) from (3) 7x - 7y = 35 ...(3) 7x - 8y = -32 ...(2) $\frac{-}{2}$ + $\frac{+}{2}$ y = 67

From (1)

$$x - 67 = 5 \Rightarrow x = 72$$

Thus, weight of Mr. Ahuja = 72 kg.
and that of Mr. Anuja = 67 kg.

Solution 9:

Let x be the constant expense per month of the family. and y be the expense per month for a single member of the family.

For a family of 4 people, the total monthly expense is Rs. 10,400. $\Rightarrow x + 4y = 10,400...(i)$

For a family of 7 people, the total monthly expense is Rs. 15,800. $\Rightarrow x + 7y = 15,800...(ii)$

Subtracting equation (i) from equation (ii), we get:

$$x + 7y = 15800$$

 $x + 4y = 10400$ [Equation (i)]
 $- - -$ [Subtracting]
 $3y = 5400$
 $\Rightarrow y = 1800$

Substituting y = 1800 in equation (i), we get x + 4(1800) = 10,400 $\Rightarrow x = 3200$

:. The constant expense is Rs. 3,200 per month and the monthly expense of each member of a family is Rs. 1,800.

Solution 10:

Let the fixed charge be Rs. x and the charge per kilometer be Rs. y.

The charges for 10 km = Rs. 10y

The charges for $15 \, \text{km} = \text{Rs.} 15 \text{y}$

According to the question,

$$\times$$
 + 10y = 315....(i)

$$x + 15y = 465....(ii)$$

Solving the equations, we get

$$-5y = -150 \Rightarrow y = 30$$

and
$$x = 315 - 10y = 315 - 10(30) = 15$$

So, the fixed charges is Rs. 15 and the charges per kilometer is Rs. 30.

To travel 32 km, aperson has to pay

Rs.
$$15 + Rs$$
. $30(32) = Rs$. $15 + Rs$. $960 = Rs$. 975

Solution 11:

Let the fixed charges be Rs. x and the charge for each extra day be Rs. y.

According to the question,

$$x + 4y = 27.....(i)$$

and
$$x + 2y = 21.....(ii)$$

Solving the equations, we get

$$2y = 6 \Rightarrow y = 3$$

and
$$x = 21 - 2y = 21 - 2(3) = 15$$

Hence, the fixed charges is Rs. 15 and the charge for each extra day is Rs. 3.

Solution 12:

Let the length of the rectangle be x units and the breadth of the rectangle be y units.

We know that, area of a rectangle = length x breadth = xy

According to the question,

$$xy - 9 = (x - 5)(y + 3)$$

$$\Rightarrow$$
 xv - 9 = xv + 3x - 5v - 15

$$\Rightarrow 3x - 5y = 6.....(i)$$

$$xy + 67 = (x + 3)(y + 2)$$

$$\Rightarrow$$
 xy + 67 = xy + 2x + 3y + 6

$$\Rightarrow$$
 2x + 3y = 61....(ii)

Multiply (i) by 2 and (ii) by 3, we get

and
$$6x + 9y = 183....(iv)$$

Solving (iii) and (iv), we get

$$-19y = -171 \Rightarrow y = 9$$

and
$$x = 17$$

Hence, the length of the rectangle is 17 units and the breadth of the rectangle is 9 units.

Solution 13:

Let the pipe with larger diameter and smaller diameter be pipes A and B respectively. Also, let pipe A work at a rate of x hours / unit and pipe B work at a rate of y hours / unit. According to the question,

$$x + y = \frac{1}{12} \Rightarrow 12x + 12y = 1....(i)$$

and
$$4x + 9y = \frac{1}{2} \Rightarrow 8x + 18y = 1 \dots (ii)$$

Multiply (i) by 2 and (ii) by 3, we get

$$24x + 24y = 2$$
 and $24x + 54y = 3$

On solving we get,
$$30y = 1 \Rightarrow y = \frac{1}{30}$$

and
$$x = \frac{1}{20}$$

Hence, the pipe with larger diameter will take 20 hours to fill the swimming pool and the pipe with smaller diameter will take 30 hours to fill the swimming pool.