Exercise – 14.1

1.

Sol:

Let AB be the tower standing vertically on the ground and O be the position of the obsrever we now have:

$$OA = 20 m$$
, $\angle OAB = 90^{\circ}$ and $\angle AOB = 60^{\circ}$

Let

$$AB = hm$$

Now, in the right $\triangle OAB$, we have:

$$\frac{AB}{OA} - \tan 60^\circ = \sqrt{3}$$

$$\Rightarrow \frac{h}{20} = \sqrt{3}$$

$$\Rightarrow h = 20\sqrt{3} = (20 \times 1.732) = 36.64$$

Hence, the height of the pole is 34.64 m.

2.

Sol:

Let OX be the horizontal ground and A be the position of the kite.

Also, let O be the position of the observer and OA be the thread.

Now, draw $AB \perp OX$.

We have:

$$\angle BOA = 60^{\circ}, OA = 75 m \text{ and } \angle OBA = 90^{\circ}$$

Height of the kite from the ground = AB = 75 m

Length of the string OA = xm

In the right $\triangle OBA$, we have:

$$\frac{AB}{OA} = \sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \frac{75}{x} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow x = \frac{75 \times 2}{\sqrt{3}} = \frac{150}{1.732} = 86.6 m$$

Hence, the length of the string is 86.6m

3.

Sol:

Let CE and AD be the heights of the observer and the chimney, respectively. We have,

$$BD = CE = 1.5 m$$
, $BC = DE = 30 m$ and $\angle ACB = 60^{\circ}$

In $\triangle ABC$

$$\tan 60^{\circ} = \frac{AB}{BC}$$

$$\Rightarrow \sqrt{3} = \frac{AD - BD}{30}$$

$$\Rightarrow AD - 1.5 = 30\sqrt{3}$$

$$\Rightarrow AD = 30\sqrt{3} + 1.5$$

$$\Rightarrow AD = 30 \times 1.732 + 1.5$$

$$\Rightarrow AD = 51.96 + 1.5$$

$$\Rightarrow AD = 53.46 m$$

So, the height of the chimney is 53.46 m (approx).

4.

Sol:

Let the height of the tower be AB.

We have.

$$AC = 5m$$
, $AD = 20m$

Let the angle of elevation of the top of the tower (i.e. $\angle ACB$) from point C be θ .

Then,

the angle of elevation of the top of the tower (i.e. Z ADB) from point D

$$=(90^{\circ}-\theta)$$

Now, in $\triangle ABC$

$$\tan \theta = \frac{AB}{AC}$$

$$\Rightarrow \tan \theta = \frac{AB}{5}$$
(i)

Also, in $\triangle ABD$,

$$\cot(90^{\circ} - \theta) = \frac{AD}{AB}$$

$$\Rightarrow \tan \theta = \frac{20}{AB} \qquad \dots (ii)$$

From (i) and (ii), we get

$$\frac{AB}{5} = \frac{20}{AB}$$

$$\Rightarrow AB^2 = 100$$

$$\Rightarrow AB = \sqrt{100}$$

$$\therefore AB = 10 m$$

So, the height of the tower is 10 m.

5.

Sol:

Let BC and CD be the heights of the tower and the flagstaff, respectively.

We have

$$AB = 120 m$$
, $\angle BAC = 45^{\circ}$, $\angle BAD = 60^{\circ}$

Let
$$CD = x$$

In $\triangle ABC$,

$$\tan 45^{\circ} = \frac{BC}{AB}$$

$$\Rightarrow 1 = \frac{BC}{120}$$

$$\Rightarrow BC = 120 m$$

Now, in $\triangle ABD$,

$$\tan 60^{\circ} = \frac{BD}{AB}$$

$$\Rightarrow \sqrt{3} = \frac{BC + CD}{120}$$

$$\Rightarrow BC + CD = 120\sqrt{3}$$

$$\Rightarrow$$
 120 + $x = 120\sqrt{3}$

$$\Rightarrow x = 120\sqrt{3} - 120$$

$$\Rightarrow x = 120(\sqrt{3} - 1)$$

$$\Rightarrow x = 120(1.732 - 1)$$

$$\Rightarrow x = 120(0.732)$$

$$\Rightarrow x = 87.84 \approx 87.8 \, m$$

So, the height of the flagstaff is $87.\ 8\ m.$

6.

Sol:

Let BC be the tower and CD be the water tank.

We have,

$$AB = 40 \, m$$
, $\angle BAC = 30^{\circ}$ and $\angle BAD = 45^{\circ}$

In $\triangle ABD$,

$$\tan 45^{\circ} = \frac{BD}{AB}$$

$$\Rightarrow 1 = \frac{BD}{40}$$

$$\Rightarrow BD = 40 \, m$$

Now, in $\triangle ABC$,

$$\tan 30^{\circ} = \frac{BC}{AB}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{BC}{40}$$

$$\Rightarrow BC = \frac{40}{\sqrt{3}}$$

$$\Rightarrow BC = \frac{40}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$\Rightarrow BC = \frac{40\sqrt{3}}{3}m$$

(i) The height of the tower,
$$BC = \frac{40\sqrt{3}}{3} = \frac{40 \times 1.73}{3} = 23.067 \approx 23.1 m$$

(ii) The depth of the tank,
$$CD = (BD - BC) = (40 - 23.1) = 16.9 m$$

7.

Sol:

Let AB be the tower and BC be the flagstaff,

We have,

$$BC = 6m$$
, $\angle AOB = 30^{\circ}$ and $\angle AOC - 60^{\circ}$

Let
$$AB = h$$

In $\triangle AOB$,

$$\tan 30^{\circ} = \frac{AB}{OA}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{OA}$$

$$\Rightarrow OA = h\sqrt{3}$$
(i)

Now, in $\triangle AOC$,

$$\tan 60^{\circ} = \frac{AC}{OA}$$

$$\Rightarrow \sqrt{3} = \frac{AB + BC}{h\sqrt{3}}$$
 [Using (i)]

$$\Rightarrow 3h = h + 6$$

$$\Rightarrow 3h - h = 6$$

$$\Rightarrow 2h = 6$$

$$\Rightarrow h = \frac{6}{2}$$

$$\Rightarrow h = 3 m$$

So, the height of the tower is 3 m.

8.

Sol

Let AC be the pedestal and BC be the statue such that BC = 1.46m.

We have:

$$\angle ADC = 45^{\circ}$$
 and $\angle ADB = 60^{\circ}$

Let:

$$AC = hm$$
 and $AD = xm$

In the right $\triangle ADC$, we have:

$$\frac{AC}{AD} = \tan 45^{\circ} = 1$$

$$\Rightarrow \frac{h}{x} = 1$$

$$\Rightarrow h = x$$

Or,

$$x = h$$

Now, in the right $\triangle ADB$, we have:

$$\frac{AB}{AD} = \tan 60^\circ = \sqrt{3}$$

$$\Rightarrow \frac{h+1.46}{x} = \sqrt{3}$$

On putting x = h in the above equation, we get

$$\frac{h+1.46}{h} = \sqrt{3}$$

$$\Rightarrow h+1.46 = \sqrt{3}h$$

$$\Rightarrow h(\sqrt{3}-1)=1.46$$

$$\Rightarrow h = \frac{1.46}{\left(\sqrt{3} - 1\right)} = \frac{1.46}{0.73} = 2 \, m$$

Hence, the height of the pedestal is 2 m.

9.

Sol:

Let AB be the unfinished tower, AC be the raised tower and O be the point of observation We have:

$$OA = 75m$$
, $\angle AOB = 30^{\circ}$ and $\angle AOC = 60^{\circ}$

Let AC = H m such that BC = (H - h)m.

In $\triangle AOB$, we have:

$$\frac{AB}{OA} = \tan 30^\circ = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{h}{75} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow h = \frac{75}{\sqrt{3}} m = \frac{75 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = 25\sqrt{3} m$$

In $\triangle AOC$, we have:

$$\frac{AC}{QA} = \tan 60^\circ = \sqrt{3}$$

$$\Rightarrow \frac{H}{75} = \sqrt{3}$$

$$\Rightarrow H = 75\sqrt{3}m$$

:. Required height =
$$(H - h) = (75\sqrt{3} - 25\sqrt{3}) = 50\sqrt{3}m = 86.6 m$$

10.

Sol:

Let OX be the horizontal plane, AD be the tower and CD be the vertical flagpole We have:

$$AB = 9 m$$
, $\angle DBA = 30^{\circ}$ and $\angle CBA = 60^{\circ}$

Let:

$$AD = hm$$
 and $CD = xm$

In the right $\triangle ABD$, we have:

$$\frac{AD}{AB} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{h}{9} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow h = \frac{9}{\sqrt{3}} = 5.19 \ m$$

Now, in the right $\triangle ABC$, we have

$$\frac{AC}{BA} = \tan 60^{\circ} = \sqrt{3}$$

$$\Rightarrow \frac{h+x}{9} = \sqrt{3}$$

$$\Rightarrow h + x = 9\sqrt{3}$$

By putting $h = \frac{9}{\sqrt{3}}$ in the above equation, we get:

$$\frac{9}{\sqrt{3}} + x = 9\sqrt{3}$$

$$\Rightarrow x = 9\sqrt{3} - \frac{9}{\sqrt{3}}$$

$$\Rightarrow x = \frac{27 - 9}{\sqrt{3}} = \frac{18}{\sqrt{3}} = \frac{18}{1.73} = 10.4$$

Thus, we have:

Height of the flagpole = 10. 4 m

Height of the tower = 5.19 m

11.

Sol:

Let AB and CD be the equal poles; and BD be the width of the road.

We have,

$$\angle AOB = 60^{\circ} \ and \ \angle COD = 60^{\circ}$$

In $\triangle AOB$,

$$\tan 60^{\circ} = \frac{AB}{BO}$$

$$\Rightarrow \sqrt{3} = \frac{AB}{BO}$$

$$\Rightarrow BO = \frac{AB}{\sqrt{3}}$$

Also, in $\triangle COD$,

$$\tan 30^{\circ} = \frac{CD}{DO}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{CD}{DO}$$

$$\Rightarrow DO = \sqrt{3}CD$$

As,
$$BD = 80$$

$$\Rightarrow BO + DO = 80$$

$$\Rightarrow \frac{AB}{\sqrt{3}} + \sqrt{3}CD = 80$$

$$\Rightarrow \frac{AB}{\sqrt{3}} + \sqrt{3}AB = 80$$

(Given:
$$AB = CD$$
)

$$\Rightarrow AB\left(\frac{1}{\sqrt{3}} + \sqrt{3}\right) = 80$$

$$\Rightarrow AB\left(\frac{1+3}{\sqrt{3}}\right) = 80$$

$$\Rightarrow AB\left(\frac{4}{\sqrt{3}}\right) = 80$$

$$\Rightarrow AB = \frac{80 + \sqrt{3}}{4}$$

$$\Rightarrow AB = 20\sqrt{3}m$$
Also, $BO = \frac{AB}{\sqrt{3}} = \frac{20\sqrt{3}}{\sqrt{3}} = 20m$
So, $DO = 80 - 20 = 60m$

Hence, the height of each pole is $20\sqrt{3} m$ and point P is at a distance of 20 m from left pole ad 60 m from right pole.

12.

Sol:

Let CD be the tower and A and B be the positions of the two men standing on the opposite sides.

Thus, we have:

$$\angle DAC = 30^{\circ}, \angle DBC = 45^{\circ} \ and \ CD = 50 \ m$$

Let AB = xm and BC = ym such that AC = (x - y)m.

In the right $\triangle DBC$, we have:

$$\frac{CD}{BC} = \tan 45^{\circ} = 1$$

$$\Rightarrow \frac{50}{y} = 1$$

$$\Rightarrow y = 50 m$$

In the right $\triangle ACD$, we have:

$$\frac{CD}{AC} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$
$$\Rightarrow \frac{50}{(x-y)} = \frac{1}{\sqrt{3}}$$
$$\Rightarrow x-y = 50\sqrt{3}$$

On putting y = 50 in the above equation, we get:

$$x-50 = 50\sqrt{3}$$
⇒ $x = 50 + 50\sqrt{3} = 50(\sqrt{3} + 1) = 136.6 m$
∴ Distance between the two men = $AB = x = 136.6 m$

13.

Sol:

Let PQ be the tower

We have,

$$PQ = 100m$$
, $\angle PQR = 30^{\circ}$ and $\angle PBQ = 45^{\circ}$

In $\triangle APQ$,

$$\tan 30^{\circ} = \frac{PQ}{AP}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{100}{AP}$$

$$\Rightarrow AP = 100\sqrt{3} \ m$$

Also, in $\triangle BPQ$,

$$\tan 45^{\circ} = \frac{PQ}{BP}$$

$$\Rightarrow 1 = \frac{100}{BP}$$

$$\Rightarrow BP = 100 \, m$$

Now,
$$AB = AP + BP$$

$$=100\sqrt{3}+100$$

$$=100\left(\sqrt{3}+1\right)$$

$$=100 \times (1.73 + 1)$$

$$=100 \times 2.73$$

$$= 273 \, m$$

So, the distance between the cars is 273 m.

14.

Sol:

Let PQ be the tower.

We have,

$$\angle PBQ = 60^{\circ} \text{ and } \angle PAQ = 30^{\circ}$$

Let
$$PQ = h$$
, $AB = x$ and $BQ = y$

In $\triangle APQ$,

$$\tan 30^{\circ} = \frac{PQ}{AQ}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{x+y}$$

$$\Rightarrow x + y = h\sqrt{3} \qquad \dots (i)$$

Also, in $\triangle BPQ$,

$$\tan 60^{\circ} = \frac{PQ}{BQ}$$

$$\Rightarrow \sqrt{3} = \frac{h}{y}$$

$$\Rightarrow h = y\sqrt{3} \qquad \dots (ii)$$

Substituting $h = y\sqrt{3}$ in (i), we get

$$x + y = \sqrt{3} \left(y \sqrt{3} \right)$$

$$\Rightarrow x + y = 3y$$

$$\Rightarrow$$
 3 $y - y = x$

$$\Rightarrow 2y = x$$

$$\Rightarrow y = \frac{x}{2}$$

As, speed of the car from A to B = $\frac{AB}{6} = \frac{x}{6}$ units / sec

So, the time taken to reach the foot of the tower i.e. Q from B = $\frac{BQ}{speed}$

$$=\frac{y}{\left(\frac{x}{6}\right)}$$

$$=\frac{\left(\frac{x}{2}\right)}{\left(\frac{x}{6}\right)}$$

$$=\frac{6}{2}$$

=3 sec

So, the time taken to reach the foot of the tower from the given point is 3 seconds.

15.

Sol:

Let PQ=h m be the height of the TV tower and BQ= x m be the width of the canal. We have,

$$AB = 20 \text{ m}, \angle PAQ = 30^{\circ}, \angle BQ = x \text{ and } PQ = h$$

In $\triangle PBQ$,

$$\tan 60^{\circ} = \frac{PQ}{BQ}$$

$$\Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow h = x\sqrt{3} \qquad \dots (i)$$

Again in $\triangle APQ$,

$$\tan 30^{\circ} = \frac{PQ}{AQ}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{AB + BQ}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{x\sqrt{3}}{20 + 3} \qquad \text{[Using (i)]}$$

$$\Rightarrow 3x = 20 + x$$

$$\Rightarrow 3x - x = 20$$

$$\Rightarrow 2x = 20$$

$$\Rightarrow x = \frac{20}{2}$$

$$\Rightarrow x = 10 m$$

Substituting x = 10 in (i), we get

$$h = 10\sqrt{3}m$$

So, the height of the TV tower is $10\sqrt{3}$ m and the width of the canal is 10 m.

16.

Sol:

Let AB be thee building and PQ be the tower.

We have,

$$PQ = 60 \, m$$
, $\angle APB = 30^{\circ}$, $\angle PAQ = 60^{\circ}$

In $\triangle APQ$,

$$\tan 60^{\circ} = \frac{PQ}{AP}$$

$$\Rightarrow \sqrt{3} = \frac{60}{AP}$$

$$\Rightarrow AP = \frac{60}{\sqrt{3}}$$

$$\Rightarrow AP = \frac{60\sqrt{3}}{3}$$

$$\Rightarrow AP = 20\sqrt{3} m$$
Now, in $\triangle ABP$,
$$\tan 30^\circ = \frac{AB}{AP}$$

$$\tan 30^{\circ} = \frac{AB}{AP}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{20\sqrt{3}}$$

$$\Rightarrow AB = \frac{20\sqrt{3}}{\sqrt{3}}$$

$$\therefore AB = 20 m$$

So, the height of the building is 20 m

17.

Sol:

Let DE be the first tower and AB be the second tower.

Now, AB = 90 m and AD = 60 m such that CE = 60 m and $\angle BEC = 30^{\circ}$.

Let DE = h m such that AC = h m and BC = (90-h)m.

In the right $\triangle BCE$, we have:

$$\frac{BC}{CE} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{(90-h)}{60} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow (90-h)\sqrt{3} = 60$$

$$\Rightarrow h\sqrt{3} = 90\sqrt{3} - 60$$

$$\Rightarrow h = 90 - \frac{60}{\sqrt{3}} = 90 - 34.64 = 55.36 \ m$$

:. Height of the first tower = DE = h = 55.36m

18.

Sol:

Let PQ be the chimney and AB be the tower.

We have,

$$AB = 40 \, m$$
, $\angle APB = 30^{\circ}$ and $\angle PAQ = 60^{\circ}$

In $\triangle ABP$,

$$\tan 30^{\circ} = \frac{AB}{AP}$$
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{40}{AP}$$

$$\Rightarrow AP = 40\sqrt{3} m$$

Now, in $\triangle APQ$,

$$\tan 60^{\circ} = \frac{PQ}{AP}$$

$$\Rightarrow \sqrt{3} = \frac{PQ}{40\sqrt{3}}$$

$$\therefore PQ = 120 \, m$$

So, the height of the chimney is 120 m.

Hence, the height of the chimney meets the pollution norms.

In this question, management of air pollution has been shown

19.

Sol:

Let AB be the 7-m high building and CD be the cable tower,

We have,

$$AB = 7 m$$
, $\angle CAE = 60^{\circ}$, $\angle DAE = \angle ADB = 45^{\circ}$

Also,
$$DE = AB = 7 m$$

In $\triangle ABD$,

$$\tan 45^{\circ} = \frac{AB}{BD}$$

$$\Rightarrow 1 = \frac{7}{BD}$$

$$\Rightarrow BD = 7 m$$

So,
$$AE = BD = 7 m$$

Also, in $\triangle ACE$,

$$\tan 60^{\circ} = \frac{CE}{AE}$$

$$\Rightarrow \sqrt{3} = \frac{CE}{7}$$

$$\Rightarrow CE = 7\sqrt{3}m$$

Now,
$$CD = CE + DE$$

$$=7\sqrt{3}+7$$

$$=7\left(\sqrt{3}+1\right)m$$

$$=7(1.732+1)$$

$$=7(2.732)$$

$$=19.124$$

$$\approx 19.12 m$$

So, the height of the tower is 19.12m.

20. Sol:

Let PQ be the tower.

We have,

$$AB = 20 m$$
, $\angle PAQ = 30^{\circ}$ and $\angle PBQ = 60^{\circ}$

Let
$$BQ = x$$
 and $PQ = h$

In $\triangle PBQ$,

$$\tan 60^{\circ} = \frac{PQ}{BQ}$$

$$\Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow h = x\sqrt{3}$$

 $\dots (i)$

Also, in $\triangle APQ$,

$$\tan 30^{\circ} = \frac{PQ}{AQ}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{AB + BQ}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{x\sqrt{3}}{20+x}$$
 [Using (i)]

$$\Rightarrow$$
 20 + $x = 3x$

$$\Rightarrow 3x - x = 20$$

$$\Rightarrow 2x = 20$$

$$\Rightarrow x = \frac{20}{2}$$

$$\Rightarrow x = 10 m$$

From (i),

$$h = 10\sqrt{3} = 10 \times 1.732 = 17.32 \, m$$

Also,
$$AQ = AB + BQ = 20 + 10 = 30m$$

So, the height of the tower is 17. 32 m and its distance from the point A is 30 m.

21.

Sol:

Let PQ be the tower

We have,

$$AB = 10 m$$
, $\angle MAP = 30^{\circ}$ and $\angle PBQ = 60^{\circ}$

Also,
$$MQ = AB = 10m$$

Let
$$BQ = x$$
 and $PQ = h$

So,
$$AM = BQ = x$$
 and $PM = PQ - MQ = h - 10$

In $\triangle BPQ$,

$$\tan 60^{\circ} = \frac{PQ}{BQ}$$

$$\Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow x = \frac{h}{\sqrt{3}} \qquad \dots (i)$$

Now, in $\triangle AMP$,

$$\tan 30^{\circ} = \frac{PM}{AM}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h - 10}{x}$$

$$\Rightarrow h\sqrt{3} - 10\sqrt{3} = x$$

$$\Rightarrow h\sqrt{3} - 10\sqrt{3} = \frac{h}{\sqrt{3}}$$
 [Using (i)]

$$\Rightarrow 3h - 30 = h$$

$$\Rightarrow 3h - h = 30$$

$$\Rightarrow 2h = 30$$

$$\Rightarrow h = \frac{30}{2}$$

$$\therefore h = 15 m$$

So, the height of the tower is 15 m.

Sol:

Let AD be the tower and BC be the cliff.

We have,

$$BC = 60\sqrt{3}$$
, $\angle CDE = 45^{\circ}$ and $\angle BAC = 60^{\circ}$

Let
$$AD = h$$

$$\Rightarrow BE = AD = h$$

$$\Rightarrow CE = BC - BE = 60\sqrt{3} - h$$

In $\triangle CDE$,

$$\tan 45^{\circ} = \frac{CE}{DE}$$

$$\Rightarrow 1 = \frac{60\sqrt{3} - h}{DE}$$

$$\Rightarrow DE = 60\sqrt{3} - h$$

$$\Rightarrow AB = DE = 60\sqrt{3} - h \qquad \dots (i)$$

Now, in $\triangle ABC$,

$$\tan 60^{\circ} = \frac{BC}{AB}$$

$$\Rightarrow \sqrt{3} = \frac{60\sqrt{3}}{60\sqrt{3} - h}$$
 [Using (i)]

$$\Rightarrow 180 - h\sqrt{3} = 60\sqrt{3}$$

$$\Rightarrow h\sqrt{3} = 180 - 60\sqrt{3}$$

$$\Rightarrow h = \frac{180 - 60\sqrt{3}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$\Rightarrow h = \frac{180\sqrt{3} - 180}{3}$$

$$\Rightarrow h = \frac{180(\sqrt{3} - 1)}{3}$$

∴
$$h = 60(\sqrt{3}-1)$$

= $60(1.732-1)$
= $60(0.732)$
Also, $h = 43.92m$
So, the height of the tower is 43. 92 m.

23.

Sol:

Let AB be the deck of the ship above the water level and DE be the cliff. Now,

AB = 16m such that CD = 16m and $\angle BDA = 30^{\circ}$ and $\angle EBC = 60^{\circ}$ If AD = xm and DE = hm, then CE = (h-16)m.

In the right $\triangle BAD$, we have

$$\frac{AB}{AD} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{16}{x} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow x = 16\sqrt{3} = 27.68 \, m$$

In the right $\triangle EBC$, we have:

$$\frac{EC}{BC} = \tan 60^{\circ} = \sqrt{3}$$

$$\Rightarrow \frac{(h-16)}{x} = \sqrt{3}$$

$$\Rightarrow h-16 = x\sqrt{3}$$

$$\Rightarrow h-16 = 16\sqrt{3} \times \sqrt{3} = 48 \quad \left[\because x = 16\sqrt{3}\right]$$

$$\Rightarrow h = 48 + 16 = 64 m$$

: Distance of the cliff from the deck of the ship = AD = x = 27.68 m

And,

Height of the cliff = DE = h = 64 m

24.

Sol:

We have

$$XY = 40 m$$
, $\angle PXQ = 60^{\circ}$ and $\angle MYQ = 45^{\circ}$

Let
$$PQ = h$$

Also,
$$MP = XY = 40 \, m, MQ = PQ - MP = h - 40$$

In $\triangle MYQ$,

$$\tan 45^{\circ} = \frac{MQ}{MY}$$

$$\Rightarrow 1 = \frac{h-40}{MY}$$

$$\Rightarrow MY = h - 40$$

$$\Rightarrow PX = MY = h - 40$$
(i)

Now, in ΔMXQ ,

$$\tan 60^{\circ} = \frac{PQ}{PX}$$

$$\Rightarrow \sqrt{3} = \frac{h}{h - 40}$$
 [From (i)]

$$\Rightarrow h\sqrt{3} - 40\sqrt{3} = h$$

$$\Rightarrow h\sqrt{3} - h = 40\sqrt{3}$$

$$\Rightarrow h\left(\sqrt{3}-1\right) = 40\sqrt{3}$$

$$\Rightarrow h = \frac{40\sqrt{3}}{\left(\sqrt{3} - 1\right)}$$

$$\Rightarrow h = \frac{40\sqrt{3}}{\left(\sqrt{3}-1\right)} \times \frac{\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)}$$

$$\Rightarrow h = \frac{40\sqrt{3}\left(\sqrt{3}+1\right)}{\left(3-1\right)}$$

$$\Rightarrow h = \frac{40\sqrt{3}\left(\sqrt{3}+1\right)}{2}$$

$$\Rightarrow h = 20\sqrt{3}\left(\sqrt{3}+1\right)$$

$$\Rightarrow h = 20\sqrt{3}\left(\sqrt{3}+1\right)$$

$$\Rightarrow h = 60+20\sqrt{3}$$

$$\Rightarrow h = 60+20\times1.73$$

$$\Rightarrow h = 60+34.6$$

$$\therefore h = 94.6 m$$

So, the height of the tower PQ is 94.6 m.

25.

Sol:

Let the height of flying of the aero-plane be PQ = BC and point A be the point of observation.

We have,

$$PQ = BC = 2500 \, m$$
, $\angle PAQ = 45^{\circ}$ and $\angle BAC = 30^{\circ}$

In $\triangle PAQ$,

$$\tan 45^\circ = \frac{PQ}{AQ}$$

$$\Rightarrow 1 = \frac{2500}{AQ}$$

$$\Rightarrow AQ = 2500 \ m$$

Also, in $\triangle ABC$,

$$\tan 30^{\circ} = \frac{BC}{AC}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{2500}{AC}$$

$$\Rightarrow AC = 2500\sqrt{3} m$$
Now, $QC = AC - AQ$

$$= 2500\sqrt{3} - 2500$$

$$= 2500(\sqrt{3} - 1)m$$

$$= 2500(1.732 - 1)$$

$$= 2500(0.732)$$

$$= 1830 m$$

$$\Rightarrow PB = QC = 1830 m$$

So, the speed of the aero-plane = $\frac{PB}{15}$

$$= \frac{1830}{15}$$

$$= 122 m/s$$

$$= 122 \times \frac{3600}{1000} \ km/h$$

$$= 439.2 \ km/h$$

So, the speed of the aero-plane is 122m/s or 439.2 km/h.

26.

Sol:

Let AB be the tower

We have:

$$CD = 150 \, m$$
, $\angle ACB = 30^{\circ} \, and \, \angle ADB = 60^{\circ}$

Let:

$$AB = hm$$
 and $BD = xm$

In the right $\triangle ABD$, we have:

$$\frac{AB}{AD} = \tan 60^{\circ} = \sqrt{3}$$

$$\Rightarrow \frac{h}{x} = \sqrt{3}$$

$$\Rightarrow x = \frac{h}{\sqrt{3}}$$

Now, in the right $\triangle ACB$, we have:

$$\frac{AB}{AC} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{h}{x+150} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \sqrt{3}h = x+150$$

On putting $x = \frac{h}{\sqrt{3}}$ in the above equation, we get:

$$\sqrt{3}h = \frac{h}{\sqrt{3}} + 150$$

$$\Rightarrow 3h = h + 150\sqrt{3}$$

$$\Rightarrow 2h = 150\sqrt{3}$$

$$\Rightarrow h = \frac{150\sqrt{3}}{2} = 75\sqrt{3} = 75 \times 1.732 = 129.9 \, m$$

Hence, the height of the tower is 129.9 m

27.

Sol:

Let OA be the lighthouse and B and C be the positions of the ship.

Thus, we have:

$$OA = 100 \, m$$
, $\angle OBA = 30^{\circ} \, and \, \angle OCA = 60^{\circ}$

Let

$$OC = x m and BC = y m$$

In the right $\triangle OAC$, we have

$$\frac{OA}{OC} = \tan 60^{\circ} = \sqrt{3}$$

$$\Rightarrow \frac{100}{x} = \sqrt{3}$$

$$\Rightarrow x = \frac{100}{\sqrt{3}}m$$

Now, in the right $\triangle OBA$, we have:

$$\frac{OA}{OB} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$
$$\Rightarrow \frac{100}{x+y} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow x + y = 100\sqrt{3}$$

On putting $x = \frac{100}{\sqrt{3}}$ in the above equation, we get:

$$y = 100\sqrt{3} - \frac{100}{\sqrt{3}} = \frac{300 - 100}{\sqrt{3}} = \frac{200}{\sqrt{3}} = 115.47 \, m$$

 \therefore Distance travelled by the ship during the period of observation = $B = y = 115.47 \, m$

28.

Sol:

Let A and B be two points on the banks on the opposite side of the river and P be the point on the bridge at a height of 2.5 m.

Thus, we have:

$$DP = 2.5$$
, $\angle PAD = 30^{\circ}$ and $\angle PBD = 45^{\circ}$

In the right $\triangle APD$, we have:

$$\frac{DP}{AD} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{2.5}{AD} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow AD = 2.5\sqrt{3}m$$

In the right $\triangle PDB$, we have:

$$\frac{DP}{BD} = \tan 45^{\circ} = 1$$

$$\Rightarrow \frac{2.5}{BD} = 1$$

$$\Rightarrow BD = 2.5m$$
∴ Width of the river = $AB = (AD + BD) = (2.5\sqrt{3} + 2.5) = 6.83m$

29.

Sol:

Let AB be the tower and C and D be two points such that AC = 4m and AD = 9m. Let:

$$AB = hm$$
, $\angle BCA = \theta$ and $\angle BDA = 90^{\circ} - \theta$

In the right $\triangle BCA$, we have:

$$\tan \theta = \frac{AB}{AC}$$

$$\Rightarrow \tan \theta = \frac{h}{A} \qquad \dots (1)$$

In the right $\triangle BDA$, we have:

$$\tan (90^{\circ} - \theta) = \frac{AB}{AD}$$

$$\Rightarrow \cot \theta = \frac{h}{9} \qquad \left[\tan (90^{\circ} - \theta) = \cot \theta \right]$$

$$\Rightarrow \frac{1}{\tan \theta} = \frac{h}{9} \qquad \dots (2) \qquad \left[\cot \theta = \frac{1}{\tan \theta} \right]$$

Multiplying equations (1) and (2), we get

$$\tan \theta \times \frac{1}{\tan \theta} = \frac{h}{4} \times \frac{h}{9}$$

$$\Rightarrow 1 = \frac{h^2}{36}$$

$$\Rightarrow$$
 36 = h^2

$$\Rightarrow h = \pm 6$$

Height of a tower cannot be negative

 \therefore Height of the tower = 6 m

30.

Sol:

Let AB and CD be the two opposite walls of the room and the foot of the ladder be fixed at the point O on the ground.

We have,

$$AO = CO = 6m$$
, $\angle AOB = 60^{\circ}$ and $\angle COD = 45^{\circ}$

In $\triangle ABO$,

$$\cos 60^{\circ} = \frac{BO}{AO}$$

$$\Rightarrow \frac{1}{2} = \frac{BO}{6}$$

$$\Rightarrow BO = \frac{6}{2}$$

$$\Rightarrow BO = 3m$$

Also, in ΔCDO ,

$$\cos 45^{\circ} = \frac{DO}{CO}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \frac{DO}{6}$$

$$\Rightarrow DO = \frac{6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$\Rightarrow DO = \frac{6\sqrt{2}}{2}$$

$$\Rightarrow DO = 3\sqrt{2} m$$

Now, the distance between two walls of the room = BD

$$=BO+DO$$

$$=3+3\sqrt{2}$$

$$=3\left(1+\sqrt{2}\right)$$

$$=3(1+1.414)$$

$$=3(2.414)$$

$$=7.242$$

$$\approx 7.24 \, m$$

So, the distant between two walls of the room is 7. 24 m.

31.

Sol:

Let OP be the tower and points A and B be the positions of the cars.

We have,

$$AB = 100 \, m$$
, $\angle OAP = 60^{\circ} \, and \, \angle OBP = 45^{\circ}$

Let
$$OP = h$$

In $\triangle AOP$,

$$\tan 60^{\circ} = \frac{OP}{OA}$$

$$\Rightarrow \sqrt{3} = \frac{h}{OA}$$

$$\Rightarrow OA = \frac{h}{\sqrt{3}}$$

Also, in $\triangle BOP$,

$$\tan 45^{\circ} = \frac{OP}{OB}$$

$$\Rightarrow 1 = \frac{h}{OB}$$

$$\Rightarrow OB = h$$
Now, $OB - OA = 100$

$$\Rightarrow h - \frac{h}{\sqrt{3}} = 100$$

$$\Rightarrow \frac{h\sqrt{3} - h}{\sqrt{3}} = 100$$

$$\Rightarrow h = \frac{100\sqrt{3}}{(\sqrt{3} - 1)} \times \frac{(\sqrt{3} + 1)}{(\sqrt{3} + 1)}$$

$$\Rightarrow h = \frac{100\sqrt{3}(\sqrt{3} + 1)}{(3 - 1)}$$

$$\Rightarrow h = \frac{100(3 + \sqrt{3})}{2}$$

$$\Rightarrow h = 50(3 + 1.732)$$

$$\Rightarrow h = 50(4.732)$$

$$\therefore h = 236.6 m$$

So, the height of the tower is 236.6 m.

Disclaimer. The answer given in the textbook is incorrect. The same has been rectified above.

32.

Sol:

Let AC be the pole and BD be the ladder

We have,

$$AC = 4m$$
, $AB = 1m$ and $\angle BDC = 60^{\circ}$

And,
$$BC = AC - AB = 4 - 1 = 3m$$

In $\triangle BDC$,

$$\sin 60^{\circ} = \frac{BC}{BD}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{3}{BD}$$

$$\Rightarrow BD = \frac{3 \times 2}{\sqrt{3}}$$

$$\Rightarrow BD = 2\sqrt{3}$$

$$\Rightarrow BD = 2 \times 1.73$$

$$\therefore BD = 3.46 m$$

So, he should use 3.46 m long ladder to reach the required position.

33.

Sol:

We have,

$$AB = 60 m$$
, $\angle ACE = 30^{\circ}$ and $\angle ADB = 60^{\circ}$

Let
$$BD = CE = x$$
 and $CD = BE = y$

$$\Rightarrow AE = AB - BE = 60 - y$$

In $\triangle ACE$,

(ii) The height of the lamp post = CD = y = 40 m

 $= 34.64 \, m$

(iii) the difference between the heights of the building and the lamp post = AB - CD = 60 - 40 = 20 m

Exercise – Multiple Choice Question

1.

Sol:

Let AB represents the vertical pole and BC represents the shadow on the ground and θ represents angle of elevation the sun.

In $\triangle ABC$,

$$\tan \theta = \frac{AB}{BC}$$

 $\Rightarrow \tan \theta = \frac{x}{x}$ (As, the height of the pole, AB =the length of the shadow, BC = x)

 $\Rightarrow \tan \theta = 1$

 $\Rightarrow \tan \theta = \tan 45^{\circ}$

 $\therefore \theta = 45^{\circ}$

Hence, the correct answer is option (c).

2.

Sol:

Here, AO be the pole; BO be its shadow and θ be the angle of elevation of the sun.

Let
$$BO = x$$

Then,
$$AO = x\sqrt{3}$$

In $\triangle AOB$,

$$\tan \theta = \frac{AO}{BO}$$

$$\Rightarrow \tan \theta = \frac{x\sqrt{3}}{x}$$

$$\Rightarrow \tan \theta = \sqrt{3}$$

$$\Rightarrow \tan \theta = \tan 60^{\circ}$$

$$\therefore \theta = 60^{\circ}$$

Hence, the correct answer is option (c).

3.

Ans: (b)

Sol:

Let AB be the pole and BC be its shadow.

Let AB = h and BC = x such that $x = \sqrt{3}h$ (given) and θ be the angle of elevation.

From $\triangle ABC$, we have

$$\frac{AB}{BC} = \tan \theta$$

$$\Rightarrow \frac{h}{x} = \frac{h}{\sqrt{3}h} = \tan \theta$$

$$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = 30^{\circ}$$

Hence, the angle of elevation is 30°.

4. Sol:

Let AB be the pole, BC be its shadow and θ be the sun's elevation. We have,

$$AB = 12 m$$
 and $BC = 4\sqrt{3} m$

In $\triangle ABC$,

$$\tan \theta = \frac{AB}{BC}$$

$$\Rightarrow \tan \theta = \frac{12}{4\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{3}{\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{3\sqrt{3}}{3}$$

$$\Rightarrow \tan \theta = \sqrt{3}$$

$$\Rightarrow \tan \theta = \tan 60^{\circ}$$

$$\therefore \theta = 60^{\circ}$$

Hence, the correct answer is option (a).

5.

Sol:

Let AB be a stick and BC be its shadow, and PQ be the tree and QR be its shadow. We have,

$$AB = 5m, BC = 2m, PQ = 12.5m$$

In $\triangle ABC$,

$$\tan \theta = \frac{AB}{BC}$$

$$\Rightarrow \tan \theta = \frac{5}{2} \qquad \dots (i)$$

Now, in $\triangle PQR$,

$$\tan \theta = \frac{PQ}{QR}$$

$$\Rightarrow \frac{5}{2} = \frac{12.5}{QR}$$
 [Using (i)]
$$\Rightarrow QR = \frac{125 \times 2}{5} = \frac{25}{5}$$

$$\therefore QR = 5m$$

Hence, the correct answer is option (d).

6.

Sol:

Let AB be the wall and AC be the ladder.

We have,

$$BC = 2m$$
 and $\angle ACB = 60^{\circ}$

In $\triangle ABC$,

$$\cos 60^{\circ} = \frac{BC}{AC}$$

$$\Rightarrow \frac{1}{2} = \frac{2}{AC}$$

$$\therefore AC = 4m$$

Hence, the correct answer is option (d).

7.

Sol:

Let AB be the wall and AC be the ladder

We have,

$$AC = 15 m$$
 and $\angle BAC = 60^{\circ}$

$$\cos 60^{\circ} = \frac{AB}{AC}$$

$$\Rightarrow \frac{1}{2} = \frac{AB}{15}$$

$$\therefore AB = \frac{15}{2} m$$

Hence, the correct answer is option (c).

8.

Sol:

Let AB be the tower and point C be the point of observation on the ground. We have,

$$BC = 30 m$$
 and $\angle ACB = 30^{\circ}$

In $\triangle ABC$,

$$\tan 30^{\circ} = \frac{AB}{BC}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{30}$$

$$\Rightarrow AB = \frac{30}{\sqrt{3}}$$

$$\Rightarrow AB = \frac{30}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$\Rightarrow AB = \frac{30\sqrt{3}}{3}$$

$$\therefore AB = 10\sqrt{3} \ m$$

Hence, the correct answer is option (b).

9.

Sol:

Let AB be the tower and point C be the position of the car.

We have,

$$AB = 150 m$$
 and $\angle ACB = 30^{\circ}$

In $\triangle ABC$,

$$\tan 30^{\circ} = \frac{AB}{BC}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{150}{BC}$$

$$\therefore BC = 150\sqrt{3} \ m$$

Hence, the correct answer is option (b).

10.

Sol:

Let point A be the position of the kite and AC be its string We have,

$$AB = 30m$$
 and $AC = 60m$

Let
$$\angle ACB = \theta$$

In $\triangle ABC$,

$$\sin\theta = \frac{AB}{AC}$$

$$\Rightarrow \sin \theta = \frac{30}{60}$$

$$\Rightarrow \sin \theta = \frac{1}{2}$$

$$\Rightarrow \sin \theta = \sin 30^{\circ}$$

$$\therefore \theta = 30^{\circ}$$

Hence, the correct answer is option (b).

11.

Sol:

Let AB be the cliff and CD be the tower.

We have,

$$AB = 20m$$

Also, $CE = AB = 20m$
Let $\angle ACB = \angle CAE = \angle DAE = \theta$
In $\triangle ABC$,
 $\tan \theta = \frac{AB}{BC}$
 $\Rightarrow \tan \theta = \frac{20}{BC}$
 $\Rightarrow \tan \theta = \frac{20}{AE}$ (As, $BC = AE$)
 $\Rightarrow AE = \frac{20}{\tan \theta}$ (i)
Also, in $\triangle ADE$,
 $\tan \theta = \frac{DE}{AE}$
 $\Rightarrow \tan \theta = \frac{DE}{\left(\frac{20}{\tan \theta}\right)}$ [Using (i)]
 $\Rightarrow \tan \theta = \frac{DE \times \tan \theta}{20}$
 $\Rightarrow DE = \frac{20 \times \tan \theta}{\tan \theta}$
 $\Rightarrow DE = 20m$
Now, $CD = DE + CE$
 $= 20 + 20$
 $\therefore CD = 40m$

Hence, the correct answer is option (b).

Disclaimer. The answer given in the textbook is incorrect. The same has been rectified above.

12.

Let AB be the lamp post; CD be the girl and DE be her shadow.

We have,

$$CD = 1.5 m, AD = 3 m, DE = 4.5 m$$

Let
$$\angle E = \theta$$

In $\triangle CDE$,

$$\tan \theta = \frac{CD}{DE}$$

$$\Rightarrow \tan \theta = \frac{1.5}{4.5}$$

$$\Rightarrow \tan \theta = \frac{1}{3} \qquad \dots (i)$$

Now, in $\triangle ABE$,

$$\tan \theta = \frac{AB}{AE}$$

$$\Rightarrow \frac{1}{3} = \frac{AB}{AD + DE}$$

$$\Rightarrow \frac{1}{3} = \frac{AB}{3 + 4.5}$$

$$\Rightarrow AB = \frac{7.5}{3}$$

$$\Rightarrow \therefore AB = 2.5 m$$
[Using (i)]

Hence, the correct answer is option (c).

13.

Let CD = h be the height of the tower.

We have,

$$AB = 2x$$
, $\angle DAC = 30^{\circ}$ and $\angle DBC = 45^{\circ}$

In $\triangle BCD$,

$$\tan 45^{\circ} = \frac{CD}{RC}$$

$$\Rightarrow 1 = \frac{h}{BC}$$

$$\Rightarrow BC = h$$

Now, in $\triangle ACD$,

$$\tan 30^{\circ} = \frac{CD}{AC}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{AB + BC}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{2x+h}$$

$$\Rightarrow 2x + h = h\sqrt{3}$$

$$\Rightarrow h\sqrt{3} - h = 2x$$

$$\Rightarrow h(\sqrt{3}-1)=2x$$

$$\Rightarrow h = \frac{2x}{\left(\sqrt{3} - 1\right)} \times \frac{\left(\sqrt{3} + 1\right)}{\left(\sqrt{3} + 1\right)}$$

$$\Rightarrow h = \frac{2x(\sqrt{3}+1)}{(\sqrt{3}-1)}$$

$$\Rightarrow h = \frac{2x\left(\sqrt{3}+1\right)}{2}$$

$$\therefore h = x(\sqrt{3} + 1)m$$

Hence, the correct answer is option (d).

14.

Let AB be the rod and BC be its shadow; and θ be the angle of elevation of the sun. We have,

$$AB:BC=1:\sqrt{3}$$

Let
$$AB = x$$

Then,
$$BC = x\sqrt{3}$$

In $\triangle ABC$,

$$\tan \theta = \frac{AB}{BC}$$

$$\Rightarrow \tan \theta = \frac{x}{x\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \tan \theta = \tan 30^{\circ}$$

$$\therefore \theta = 30^{\circ}$$

Hence, the correct answer is option (a).

15.

Sol:

Let AB be the pole and BC be its shadow.

We have,

$$BC = 2\sqrt{3}m$$
 and $\angle ACB = 60^{\circ}$

In $\triangle ABC$,

$$\tan 60^\circ = \frac{AB}{BC}$$

$$\Rightarrow \sqrt{3} = \frac{AB}{2\sqrt{3}}$$

$$\therefore AB = 6m$$

Hence, the correct answer is option (b).

16.

Sol:

Let the sun's altitude be θ .

We have,

$$AB = 20 m$$
 and $BC = 20\sqrt{3} m$

In $\triangle ABC$,

$$\tan \theta = \frac{AB}{BC}$$

$$\Rightarrow \tan \theta = \frac{20}{20\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \tan \theta = \tan 30^{\circ}$$

$$\therefore \theta = 30^{\circ}$$

Hence, the correct answer is option (a).

17.

Let AB and CD be the two towers such that AB = x and CD = y.

We have,

$$\angle AEB = 30^{\circ}, \angle CED = 60^{\circ} \text{ and } BE = DE$$

In $\triangle ABE$,

$$\tan 30^{\circ} = \frac{AB}{BE}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{x}{BE}$$

$$\Rightarrow BE = x\sqrt{3}$$

Also, in $\triangle CDE$,

$$\tan 60^{\circ} = \frac{CD}{DE}$$

$$\Rightarrow \sqrt{3} = \frac{y}{DE}$$

$$\Rightarrow DE = \frac{y}{\sqrt{3}}$$

As,
$$BE = DE$$

$$\Rightarrow x\sqrt{3} = \frac{y}{\sqrt{3}}$$

$$\Rightarrow \frac{x}{y} = \frac{1}{\sqrt{3} \times \sqrt{3}}$$

$$\Rightarrow \frac{x}{y} = \frac{1}{3}$$

$$x : y = 1 : 3$$

Hence, the correct answer is option (c).

18. Ans: (b)

Sol:

Let AB be the tower and O be the point of observation.

Also,

$$\angle AOB = 30^{\circ} \ and \ OB = 30 m$$

Let:

$$AB = hm$$

In $\triangle AOB$, we have:

$$\frac{AB}{OB} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{h}{30} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow h = \frac{30}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{30\sqrt{3}}{3} = 10\sqrt{3}m.$$

Hence, the height of the tower is $10\sqrt{3} m$.

19.

Ans: (a)

Sol:

Let AB be the string of the kite and AX be the horizontal line.

If $BC \perp AX$, then AB = 100 m and $\angle BAC = 60^{\circ}$

Let:

$$BC = hm$$

In the right $\triangle ACB$, we have:

$$\frac{BC}{AB} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \frac{h}{100} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow h = \frac{100\sqrt{3}}{2} = 50\sqrt{3} m$$

Hence, the height of the kite is $50\sqrt{3}$ m.

20.

Ans: (b)

Sol:

Let:AB be the tower and C and D bee the points of observation on AC.

$$\angle ACB = \theta$$
, $\angle ADB = 90 - \theta$ and $AB = hm$

Thus, we have:

$$AC = a$$
, $AD = b$ and $CD = a - b$

Now, in the right $\triangle ABC$, we have:

$$\tan \theta = \frac{AB}{AC} \Rightarrow \frac{h}{a} = \tan \theta$$
(i)

In the right $\triangle ABD$, we have:

$$\tan(90-\theta) = \frac{AB}{AD} \Rightarrow \cot\theta = \frac{h}{h}$$
(ii)

On multiplying (i) and (ii), we have:

$$\tan\theta \times \cot\theta = \frac{h}{a} \times \frac{h}{b}$$

$$\Rightarrow \frac{h}{a} \times \frac{h}{b} = 1 \qquad \left[\because \tan \theta = \frac{1}{\cot \theta} \right]$$

$$\Rightarrow h^2 = ab$$
$$\Rightarrow h = \sqrt{ab} \ m$$

Hence, the height of the tower is $\sqrt{ab} m$.

21.

Ans: (b)

Sol:

Let AB be the tower and C and D be the points of observation such that $\angle BCD = 30^{\circ}$, $\angle BDA = 60^{\circ}$, CD = 20m and AD = xm.

Now, in $\triangle ADB$, we have:

$$\frac{AB}{AD} = \tan 60^{\circ} = \sqrt{3}$$

$$\Rightarrow \frac{AB}{x} = \sqrt{3}$$

$$\Rightarrow AB = \sqrt{3}x$$

In $\triangle ACB$, we have:

$$\frac{AB}{AC} = \tan 30^\circ = \frac{1}{\sqrt{3}}$$

$$\frac{AB}{20+x} = \frac{1}{\sqrt{3}} \Rightarrow AB = \frac{20+x}{\sqrt{3}}$$

$$\therefore \sqrt{3}x = \frac{20+x}{\sqrt{3}}$$

$$\Rightarrow$$
 3 $x = 20 + x$

$$\Rightarrow 2x = 20 \Rightarrow x = 10$$

∴ Height of the tower $AB = \sqrt{3}x = 10\sqrt{3} m$

22.

Ans: (c)

Sol:

Let ABCD be the rectangle in which $\angle BAC = 30^{\circ}$ and AC = 8 cm.

In $\triangle BAC$, we have:

$$\frac{AB}{AC} = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \frac{AB}{8} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow AB = 8\frac{\sqrt{3}}{2} = 4\sqrt{3}m$$

Again,

$$\frac{BC}{AC} = \sin 30^\circ = \frac{1}{2}$$

$$\Rightarrow \frac{BC}{8} = \frac{1}{2}$$

$$\Rightarrow BC = \frac{8}{2} = 4 m$$

∴ Area of the rectangle = $(AB \times BC) = (4\sqrt{3} \times 4) = 16\sqrt{3} \ cm^2$

23.

Ans: (b)
$$\frac{1}{2} (\sqrt{3} + 1) km$$

Sol:

Let AB be the hill making angles of depression at points C and D such that $\angle ADB = 45^{\circ}$, $\angle ACB = 30^{\circ}$ and CD = 1 km.

Let:

 $AB = h \ km \ and \ AD = x \ km$

In $\triangle ADB$, we have:

$$\frac{AB}{AD} = \tan 45^{\circ} = 1$$

$$\Rightarrow \frac{h}{x} = 1 \Rightarrow h = x$$
(i)

In $\triangle ACB$, we have:

On putting the value of h taken from (i) in (ii), we get:

$$\frac{h}{h+1} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \sqrt{3}h = h+1$$

$$\Rightarrow (\sqrt{3}-1)h = 1$$

$$\Rightarrow h = \frac{1}{(\sqrt{3}-1)}$$

On multiplying the numerator and denominator of the above equation by $(\sqrt{3}+1)$, we get:

$$h = \frac{1}{\left(\sqrt{3} - 1\right)} \times \frac{\left(\sqrt{3} + 1\right)}{\left(\sqrt{3} + 1\right)} = \frac{\left(\sqrt{3} + 1\right)}{3 - 1} = \frac{\left(\sqrt{3} + 1\right)}{2} = \frac{1}{2}\left(\sqrt{3} + 1\right)km$$

Hence, the height of the hill is $\frac{1}{2}(\sqrt{3}+1)km$.

24.

Ans: (c)

Sol:

Let AB be the pole and AC and AD be its shadows.

We have:

$$\angle ACB = 30^{\circ}$$
, $\angle ADB = 60^{\circ}$ and $AB = 15m$

In $\triangle ACB$, we have

$$\frac{AC}{AB} = \cot 30^{\circ} = \sqrt{3}$$

$$\Rightarrow \frac{AC}{15} = \sqrt{3} \Rightarrow AC = 15\sqrt{3}m$$

Now, in $\triangle ADB$, we have:

$$\frac{AD}{AB} = \cot 60^{\circ} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{AD}{15} = \frac{1}{\sqrt{3}} \Rightarrow AD = \frac{15}{\sqrt{3}} = \frac{15 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{15\sqrt{3}}{3} = 5\sqrt{3} m.$$

:. Difference between the lengths of the shadows = $AC - AD = 15\sqrt{3} - 5\sqrt{3} = 10\sqrt{3}$ m

25.

Ans: (b)

Sol:

Let AB be the observer and CD be the tower.

Draw $BE \perp CD$, let CD = h meters. Then,

$$AB = 1.5 m$$
, $BE = AC = 28.5 m$ and $\angle EBD = 45^{\circ}$

$$DE = (CD - EC) = (CD - AB) = (h - 1.5)m.$$

In right $\triangle BED$, we have:

$$\frac{DE}{BE} = \tan 45^{\circ} = 1$$

$$\Rightarrow \frac{(h-1.5)}{28.5} = 1$$

$$\Rightarrow h = 1.5 = 28.5$$

$$\Rightarrow h = 28.5 + 1.5 = 30 m$$

Hence, the height of the tower is 30 m.