
Downloaded from www.studiestoday.com

RS Aggarwal Solutions Class 8 Mathematics

Area of Trapezium and Polygon

Area of Trapezium = $\frac{1}{2}h(a+b)$

: Area of the trapezium = Area of the rectangle + Area of the triangle

$$= bh + \frac{1}{2}(a - b)h$$

$$= h \left[b + \frac{1}{2}(a - b) \right]$$

$$= h \left[\frac{2b}{2} + \frac{a - b}{2} \right]$$

$$= h \left[\frac{2b + a - b}{2} \right]$$

$$= h \left(\frac{a + b}{2} \right)$$

$$= \left(\frac{\text{Half the sum of parallel sides}}{} \right) \times \left(\frac{\text{Perpendicular distance between the parallel sides}}{} \right)$$

Q1.

Answer:

Area of a trapezium = $\frac{1}{2} \times (Sum \text{ of parallel sides}) \times (Distance between them)$

$$= \left\{ \frac{1}{2} \times (24 + 20) \times 15 \right\} \text{ cm}^2$$

$$= \left(\frac{1}{2} \times 44 \times 15 \right) \text{ cm}^2$$

$$= (22 \times 15) \text{ cm}^2$$

$$= 330 \text{ cm}^2$$

Hence, the area of the trapezium is 330 cm².

Q2.

Answer:

Area of a trapezium = $\frac{1}{2} \times (Sum \text{ of parallel sides}) \times (Distance between them)$

$$= \left\{ \frac{1}{2} \times (38.7 + 22.3) \times 16 \right\} \text{ cm}^2$$

$$= \left(\frac{1}{2} \times 61 \times 16 \right) \text{ cm}^2$$

$$= (61 \times 8) \text{ cm}^2$$

$$= 488 \text{ cm}^2$$

Hence, the area of the trapezium is 488 cm².

Q3.

Answer:

Area of a trapezium =
$$\frac{1}{2}$$
 × (Sum of parallel sides) × (Distance between them)
$$= \left\{ \frac{1}{2} \times (1+1.4) \times 0.9 \right\} m^2$$
$$= \left(\frac{1}{2} \times 2.4 \times 0.9 \right) m^2$$
$$= (1.2 \times 0.9) m^2$$

Hence, the area of the top surface of the table is 1.08 m^2 .

Answer:

Let the distance between the parallel sides be x. Now

Area of trapezium = $\left\{\frac{1}{2} \times (55 + 35) \times x\right\}$ cm²

$$= \left(\frac{1}{2} \times 90 \times x\right) cm^2$$
$$= 45x \ cm^2$$

Area of the trapezium = 1080 cm² (Given)

$$\therefore 45x = 1080$$

$$\Rightarrow x = \frac{1080}{45}$$

 $\Rightarrow x = 24$ cm

Hence, the distance between the parallel sides is 24 cm.

Q5.

Answer:

Let the length of the required side be x cm. Now,

Area of trapezium = $\left\{\frac{1}{2} \times (84 + x) \times 26\right\}$ m²

$$= (1092 + 13x) \text{ m}^2$$

Area of trapezium = 1586 m² (Given)

$$1092 + 13x = 1586$$

$$\Rightarrow 13x = (1586 - 1092)$$

$$\Rightarrow 13x = 494$$

$$\Rightarrow x = \frac{494}{13}$$

$$\Rightarrow x = 38 \text{ m}$$

Hence, the length of the other side is 38 m.

Q6.

Answer:

Let the lengths of the parallel sides of the trapezium be 4x cm and 5x cm, respectively.

Now,

Area of trapezium =
$$\left\{\frac{1}{2} \times (4x + 5x) \times 18\right\}$$
 cm²
= $\left(\frac{1}{2} \times 9x \times 18\right)$ cm²
= $81x$ cm²

Area of trapezium = 405 cm² (Given)

$$\therefore 81x = 405$$

$$\Rightarrow x = \frac{405}{81}$$

$$\Rightarrow x = 5 \text{ cm}$$

Length of one side = (4×5) cm = 20 cm

Length of the other side = (5×5) cm = 25 cm

Q7.

Let the lengths of the parallel sides be x cm and (x+6) cm.

Area of trapezium =
$$\left\{\frac{1}{2} \times (x + x + \theta) \times 9\right\}$$
 cm²
= $\left(\frac{1}{2} \times (2x + \theta) \times 9\right)$ cm²
= $4.5(2x + \theta)$ cm²
= $(9x + 27)$ cm²

Area of trapezium = 180 cm^2 (Given)

∴
$$9x + 27 = 180$$

⇒ $9x = (180 - 27)$
⇒ $9x = 153$
⇒ $x = \frac{153}{9}$
⇒ $x = 17$

Hence, the lengths of the parallel sides are 17 cm and 23 cm, that is, (17+6) cm.

Q8.

Answer:

Let the lengths of the parallel sides be x cm and 2x cm.

Area of trapezium =
$$\left\{\frac{1}{2} \times (x + 2x) \times 84\right\}$$
 m²
= $\left(\frac{1}{2} \times 3x \times 84\right)$ m²
= $(42 \times 3x)$ m²
= $126x$ m²

Area of the trapezium $= 9450 \text{ m}^2$ (Given)

$$\therefore 126x = 9450$$

$$\Rightarrow x = \frac{9450}{126}$$

$$\Rightarrow x = 75$$

Thus, the length of the parallel sides are 75 m and 150 m, that is, (2×75) m, and the length of the longer side is 150 m.

Q9.

Answer:

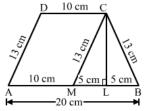
Length of the side AB =
$$(130 - (54 + 19 + 42))$$
 m
= 15 m
Area of the trapezium – shaped field = $\left\{\frac{1}{2} \times (\text{AD} + \text{BC}) \times \text{AB}\right\}$
= $\left\{\frac{1}{2} \times (42 + 54) \times 15\right\}$ m²
= $\left(\frac{1}{2} \times 96 \times 15\right)$ m²

 $= (48 \times 15) \text{ m}^2$ $= 720 \text{ m}^2$

Hence, the area of the field is 720 m^2 .

Q10.

Answer


$$\begin{split} \angle ABC &= 90\,^\circ \\ From the right ~\Delta \,ABC, \text{ we have :} \\ AB^2 &= \left(AC^2 - BC^2\right) \\ \Rightarrow AB^2 &= \left\{\left(41^2\right) - \left(40^2\right)\right\} \\ \Rightarrow AB^2 &= \left(1681 - 1600\right) \\ \Rightarrow AB^2 &= 81 \\ \Rightarrow AB &= \sqrt{81} \\ \Rightarrow AB &= 9 \text{ cm} \\ \therefore \text{ Length } AB &= 9 \text{ cm} \\ \text{Now,} \\ Area \text{ of the trapezium} &= \left\{\frac{1}{2} \times (AD + BC) \times AB\right\} \\ &= \left(\frac{1}{2} \times (16 + 40) \times 9\right) \text{ cm}^2 \\ &= \left(\frac{1}{2} \times 56 \times 9\right) \text{ cm}^2 \end{split}$$

Hence, the area of the trapezium is 252 cm^2 .

 $= (28 \times 9) \text{ cm}^2$ = 252 cm²

Q11.

Answer:

Let ABCD be the given trapezium in which AB \parallel DC, AB = 20 cm, DC = 10 cm and AD = BC = 13 cm.

Draw $CL \perp AB$ and $CM \parallel DA$ meeting AB at L and M, respectively.

Clearly, AMCD is a parallelogram.

Now,

$$AM = DC = 10 \text{ cm}$$
 $MB = (AB - AM)$
 $= (20 - 10) \text{ cm}$
 $= 10 \text{ cm}$

Also,

CM = DA = 13 cm

Therefore, $\Delta\,\mathrm{CMB}$ is an isosceles triangle and CL $\perp\,\mathrm{MB}.$

L is the midpoint of B.

$$\Rightarrow ML = LB = \left(\frac{1}{2} \times MB\right)$$
$$= \left(\frac{1}{2} \times 10\right) cm$$
$$= 5 cm$$

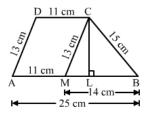
From right \triangle CLM, we have:

$$\begin{aligned} \operatorname{CL}^2 &= \left(\operatorname{CM}^2 - \operatorname{ML}^2\right) \operatorname{cm}^2 \\ \Rightarrow \operatorname{CL}^2 &= \left\{ (13)^2 - (5)^2 \right\} \operatorname{cm}^2 \\ \Rightarrow \operatorname{CL}^2 &= (109 - 25) \operatorname{cm}^2 \\ \Rightarrow \operatorname{CL}^2 &= 144 \operatorname{cm}^2 \\ \Rightarrow \operatorname{CL} &= \sqrt{144} \operatorname{cm} \\ \Rightarrow \operatorname{CL} &= 12 \operatorname{cm} \\ \therefore \operatorname{Length} \operatorname{of} \operatorname{CL} &= 12 \operatorname{cm} \end{aligned}$$

.. Length of CL = 12 cm

Area of the trapezium =
$$\left\{\frac{1}{2} \times (AB + DC) \times CL\right\}$$

$$= \left\{\frac{1}{2} \times (20 + 10) \times 12\right\} \text{ cm}^2$$


$$= \left(\frac{1}{2} \times 30 \times 12\right) \text{ cm}^2$$

$$= (15 \times 12) \text{ cm}^2$$

 $= 180 \text{ cm}^2$ Hence, the area of the trapezium is 180 cm².

Q12

Answer:

Let ABCD be the trapezium in which AB \parallel DC, AB = 25 cm, CD = 11 cm, AD = 13 cm and BC = 15 cm.

Draw $CL \perp AB$ and $CM \parallel DA$ meeting AB at L and M, respectively.

Clearly, AMCD is a parallelogram.

Now,

$$MC = AD = 13 \text{ cm}$$

 $AM = DC = 11 \text{ cm}$
 $\Rightarrow MB = (AB - AM)$

$$= (25 - 11) \text{ cm}$$

= 14 cm

Thus, in \triangle CMB, we have:

CM = 13 cm

MB = 14 cm

BC = 15 cm
∴
$$s = \frac{1}{2} (13 + 14 + 15)$$
 cm
= $\frac{1}{2} 42$ cm

=21 cm

$$(s-a) = (21-13)$$
 cm

=8 cm

$$(s-b) = (21-14)$$
 cm

=7 cm

$$(s-c) = (21-15) cm$$

= 6 cm

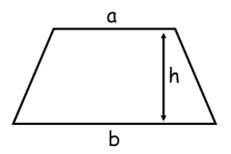
∴ Area of
$$\triangle$$
 CMB = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{21 \times 8 \times 7 \times 6}$ cm²
= 84 cm²

$$\therefore \frac{1}{2} \times MB \times CL = 84 \text{ cm}^2$$

$$\Rightarrow \frac{1}{2} \times 14 \times CL = 84 \text{ cm}^2$$

$$\Rightarrow$$
 CL = $\frac{84}{7}$

$$\Rightarrow$$
 CL = 12 cm


Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Area of the trapezium = $\left\{\frac{1}{2} \times (AB + DC) \times CL\right\}$

Area of the trapezium =
$$\left\{\frac{1}{2} \times (AB + DC) \times CL\right\}$$

= $\left\{\frac{1}{2} \times (25 + 11) \times 12\right\} \text{ cm}^2$
= $\left(\frac{1}{2} \times 36 \times 12\right) \text{ cm}^2$
= $(18 \times 12) \text{ cm}^2$
= 216 cm^2

Hence, the area of the trapezium is 216 cm^2 .

Area of Trapezium and Polygon

Ex 18B

$=\frac{1}{2}h(a+b)$ **Area of Trapezium**

Area of the trapezium = Area of the rectangle + Area of the triangle

$$=bh + \frac{1}{2}(a-b)h$$

$$= h\left[b + \frac{1}{2}(a-b)\right]$$

$$= h\left[\frac{2b}{2} + \frac{a-b}{2}\right]$$

$$= h\left[\frac{2b+a-b}{2}\right]$$

$$= h\left(\frac{a+b}{2}\right)$$
(Half the sum of

Q1.

 $= \begin{pmatrix} \text{Half the sum of} \\ \text{parallel sides} \end{pmatrix} \times \begin{pmatrix} \text{Perpendicular distance} \\ \text{between the parallel sides} \end{pmatrix}$ Answer:

Area of quadrilateral ABCD = (Area of \triangle ADC) + (Area of \triangle ACB) $= \left(\frac{1}{2} \times AC \times DM\right) + \left(\frac{1}{2} \times AC \times BL\right)$ $= \left[\left(\frac{1}{2} \times 24 \times 7 \right) + \left(\frac{1}{2} \times 24 \times 8 \right) \right] \text{ cm}^2$ $= (84 + 96) \text{ cm}^2$ $= 180 \text{ cm}^2$

Hence, the area of the quadrilateral is 180 cm². Q2.

Answer:

Area of quadrilateral ABCD = (Area of
$$\triangle$$
 ABD) + (Area of \triangle BCD)
= $\left(\frac{1}{2} \times BD \times AL\right) + \left(\frac{1}{2} \times BD \times CM\right)$
= $\left[\left(\frac{1}{2} \times 36 \times 19\right) + \left(\frac{1}{2} \times 36 \times 11\right)\right] m^2$
= $(342 + 198) m^2$
= $540 m^2$

Hence, the area of the field is 540 m². O3.

Answer:

Area of pentagon $ABCDE = (Area of \triangle AEN) + (Area of trapezium EDMN)$ + (Area of \triangle DMC) + (Area of \triangle ACB)

$$= \left(\frac{1}{2} \times \mathbf{AN} \times \mathbf{EN}\right) + \left(\frac{1}{2} \times (\mathbf{EN} + \mathbf{DM}) \times \mathbf{NM}\right) + \left(\frac{1}{2} \times \mathbf{MC} \times \mathbf{DM}\right) + \left(\frac{1}{2} \times \mathbf{AC} \times \mathbf{BL}\right)$$

$$= \left(\frac{1}{2} \times \mathbf{AN} \times \mathbf{EN}\right) + \left(\frac{1}{2} \times (\mathbf{EN} + \mathbf{DM}) \times (\mathbf{AM} - \mathbf{AN})\right) + \left(\frac{1}{2} \times (\mathbf{AC} - \mathbf{AM}) \times \mathbf{DM}\right)$$

$$+ \left(\frac{1}{2} \times \mathbf{AC} \times \mathbf{BL}\right)$$

$$= \left[\left(\frac{1}{2} \times 6 \times 9\right) + \left(\frac{1}{2} \times (9 + 12) \times (14 - 6)\right) + \left(\frac{1}{2} \times (18 - 14) \times 12\right) + \left(\frac{1}{2} \times 18 \times 4\right)\right]$$

$$\mathbf{cm}^{2}$$

$$= (27 + 84 + 24 + 36)$$

$$\mathbf{cm}^{2}$$

Answer

Area of hexagon ABCDEF = (Area of
$$\Delta$$
 AFP) + (Area of trapezium FENP) + (Area of Δ ALB) = $\left(\frac{1}{2}\times AP\times FP\right)+\left(\frac{1}{2}\times (FP+EN)\times PN\right)+\left(\frac{1}{2}\times ND\times EN\right)+\left(\frac{1}{2}\times MD\times CM\right)$ + $\left(\frac{1}{2}\times (CM+BL)\times LM\right)+\left(\frac{1}{2}\times AL\times BL\right)$ = $\left(\frac{1}{2}\times AP\times FP\right)+\left(\frac{1}{2}\times (FP+EN)\times (PL+LN)\right)+\left(\frac{1}{2}\times (NM+MD)\times CM\right)$ + $\left(\frac{1}{2}\times MD\times CM\right)+\left(\frac{1}{2}\times (CM+BL)\times (LN+NM)\right)+\left(\frac{1}{2}\times (AP+PL)\times BL\right)$ =
$$\left[\left(\frac{1}{2}\times 6\times 8\right)+\left(\frac{1}{2}\times (8+12)\times (2+8)\right)+\left(\frac{1}{2}\times (2+3)\times 12\right)+\left(\frac{1}{2}\times 3\times 6\right)\right]$$
 + $\left(\frac{1}{2}\times (6+8)\times (8+2)\right)+\left(\frac{1}{2}\times (6+2)\times 8\right)\right]$ cm² = $(24+100+30+9+70+32)$ cm² = 265 cm²

Hence, the area of the hexagon is 265 cm².

Q5.

Answer:

Area of pentagon ABCDE = (Area of
$$\triangle$$
 ABC) + (Area of \triangle ACD)
+ (Area of \triangle ADE)
= $\left(\frac{1}{2} \times AC \times BL\right) + \left(\frac{1}{2} \times AD \times CM\right) + \left(\frac{1}{2} \times AD \times EM\right)$
= $\left[\left(\frac{1}{2} \times 10 \times 3\right) + \left(\frac{1}{2} \times 12 \times 7\right) + \left(\frac{1}{2} \times 12 \times 5\right)\right] \text{ cm}^2$
= $(15 + 42 + 30) \text{ cm}^2$
= 87 cm^2

Hence, the area of the pentagon is 87 cm².

Q6.

Answer:

Area enclosed by the given figure = (Area of trapezium FEDC) + (Area of square ABCF) $= \left[\left\{ \frac{1}{2} \times (6+20) \times 8 \right\} + (20 \times 20) \right] \text{cm}^2$ $= (104+400) \text{cm}^2$ $= 504 \text{ cm}^2$

Hence, the area enclosed by the figure is 504 cm².

Q7.

Answer:

We will find the length of AC.

From the right triangles ABC and HGF, we have:

$$AC^{2} = HF^{2} = \{(5)^{2} - (4)^{2}\} \text{ cm}$$

= $(25 - 16)cm$
= $9 cm$

$$AC = HF = \sqrt{9} cm$$

Area of the given figure ABCDEFGH = (Area of rectangle ADEH)

$$+$$
 (Area of \triangle ABC) $+$ (Area of \triangle HGF)

= (Area of rectangle ADEH) + 2(Area of
$$\triangle$$
 ABC)
= (AD × DE) + 2(Area of \triangle ABC)
= {(AC + CD) × DE} + 2($\frac{1}{2}$ × BC × AC)
= {(3+4) × 8} + 2($\frac{1}{2}$ × 4 × 3) cm²
= (56+12) cm
= 68 cm²

Hence, the area of the given figure is 68 cm²

Q8.

Answer:

```
Let AL = DM = x cm
 LM = BC = 13 cm
 x + 13 + x = 23
 \Rightarrow 2x + 13 = 23
 \Rightarrow 2x = (23 - 13)
 \Rightarrow 2x = 10
 \Rightarrow x = 5
 \therefore AL = 5 cm
 From the right \triangle AFL, we have:
   FL^2 = AF^2 - AL^2
 \Rightarrow FL^2 = \{(13^2) - (5)^2\}
 \Rightarrow FL^2 = (169 - 25)
 \Rightarrow FL^2 = 144
 \Rightarrow FL = \sqrt{144}
 \Rightarrow FL = 12 \ cm
 \therefore FL = BL = 12 cm
 Area of a regular hexagon = (Area of the trapezium ADEF)
Area of a regular hexagon = (Area of the trapezium ADEF)
+(Area of the trapezium ABCD)
                       = 2(Area\ of\ trapezium\ ADEF)
                       =2\left\{ rac{1}{2}	imes (AD+EF)	imes FL
ight\}
                       =2\Big\{rac{1}{2}	imes(23+13)	imes12\Big\}cm^2
                       =2\Big(rac{1}{2}	imes36	imes12\Big)cm^2
                       =432 cm^{2}
Hence, the area of the given regular hexagon is 432 cm<sup>2</sup>.
```

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Area of Trapezium and Polygon Ex 18C

Q1.

Answer:

(b) 144 cm²

Area of the trapezium =
$$\left\{\frac{1}{2} \times (14+18) \times 9\right\}$$
 cm²
= $\left(\frac{1}{2} \times 32 \times 9\right)$ cm²
= 144 cm²

Q2.

Answer:

(c) 8 cm

Let the distance between the parallel sides be x cm.

Then, area of the trapezium =
$$\left\{\frac{1}{2} \times (19+13) \times \mathbf{x}\right\} \text{ cm}^2$$

= $\left(\frac{1}{2} \times 32 \times \mathbf{x}\right) \text{ cm}^2$

But it is given that the area of the trapezium is 128 cm².

∴
$$16x = 128$$

$$\Rightarrow x = \frac{128}{16}$$

$$\Rightarrow x = 8 \text{ cm}$$

Q3.

Answer:

(a) 45 cm

Let the length of the parallel sides be 3x cm and 4x cm, respectively.

Then, area of the trapezium =
$$\left\{\frac{1}{2} \times (3x + 4x) \times 12\right\}$$
 cm²
= $\left(\frac{1}{2} \times 7x \times 12\right)$ cm²
= $42 \ x \ cm^2$

But it is given that the area of the trapezium is 630 cm².

$$\therefore 42x = 630$$

$$\Rightarrow x = \frac{630}{42}$$

$$\Rightarrow x = 15 \ cm$$

Length of the parallel sides = (3×15) cm = 45 cm

$$(4 \times 15) \text{ cm} = 60 \text{ cm}$$

Hence, the shorter of the parallel sides is 45 cm.

Q4.

Answer:

(b) 23 cm

Let the length of the parallel sides be x cm and (x+6) cm, respectively.

Then, area of the trapezium = $\left\{\frac{1}{2} \times (x+x+6) \times 9\right\}$ cm²

$$= \left\{ \frac{1}{2} \times (2x+6) \times 9 \right\} \text{ cm}^2$$
$$= 4.5(2x+6) \text{ cm}^2$$
$$= (9x+27) \text{ cm}^2$$

But it is given that the area of the trapezium $is 180 \text{ cm}^2$.

$$\therefore 9x + 27 = 180$$

$$\Rightarrow 9x = (180 - 27)$$

$$\Rightarrow 9x = 153$$

$$\Rightarrow x = \frac{153}{9}$$

$$\Rightarrow x = 17$$

Therefore, the length of the parallel sides are 17 cm and (17+6) cm, which is equal to 23 cm.

Hence, the length of the longer parallel side is 23 cm.

Q5.

Answer:

(c) 80 cm²

From the given trapezium, we find:

$$DC = AL = 7 \ cm$$
 [since $DA \perp AB \ and \ CL \perp AB$]

From the right $\Delta\,\mathrm{CBL},$ we have:

$$CL^{2} = CB^{2} - LB^{2}$$

$$\Rightarrow CL^{2} = (10)^{2} - (6)^{2}$$

$$\Rightarrow CL^{2} = 100 - 36$$

$$\Rightarrow CL^{2} = 64$$

$$\Rightarrow CL = \sqrt{64}$$

$$\Rightarrow CL = 8 \ cm$$

Area of the trapezium = $\left\{\frac{1}{2} \times (7+13) \times 8\right\}$ cm²

$$= \left(\frac{1}{2} \times 20 \times 8\right) \text{ cm}^2$$
$$= 80 \text{ cm}^2$$