S Aggarwal Class 9 Mathematics Solution

Volume and Surface Area

Exercise 13A

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	h	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaa	a ³	$4a^2$	4a²+ <mark>2a²</mark> or 6a²
Right circular cylinder	h	πr²h	2πrh	$2\pi rh + \frac{2\pi r^2}{\text{or}}$ $2\pi r(h+r)$
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	πrl	$\pi rl + \pi r^2$ or $\pi r(l+r)$
Sphere	T/	$\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi r^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	$2\pi r^2$	2πr ² +πr ² or 3πr ²

Question 1:

- (i) length = 12cm, breadth = 8 cm and height = 4.5 cm
- \therefore Volume $\frac{\partial}{\partial t}$ cuboid = $1 \times b \times h$
- $= (12 \times 8 \times 4.5) \text{ cm}^2 = 432 \text{ cm}$
- ∴ Lateral surface area of a cuboid = 2(I + b) x h

 $= [2(12 + 8) \times 4.5] \text{ cm}^{-2}$

- $= (2 \times 20 ? 4.5) \text{ cm} = 180 \text{ cm}$
- : Total surface area cuboid = 2(lb +b h+lh)
- 2 = 2(12 x 8 + 8 x 4.5 + 12 x 4.5) cm
 - = 2(96 + 36 + 54) cm
 - $= (2 \times 186) \text{ cm}$

 - $= 372 \, cm$
- (ii) Length 26 m, breadth = 14 m and height = 6.5 m
- ∴ Volume of a cuboid = I x b x h
- $= (26 \times 14 \times 6.5) \text{ m}$
- : Lateral surface area of a cuboid =2 (I + b) x h
- =[7/74+111 v 4 5] m

```
Downloaded from www.studiestoday.com
S Aggarwal Class 9 Mathematics Solution
```

```
∴ Total surface area = 2(lb+ bh + lh)
= 2(26 \times 14 + 14 \times 6.5 + 26 \times 6.5)
= 2 (364+91+169) m<sup>2</sup>
= (2 \times 624) \text{ m} = 1248 \text{ m}^2.
```

(iii) Length = 15 m, breadth = 6m and height = 5 dm = 0.5 m \therefore Volume of a cuboid = I x b x h

 $= (15 \times 6 \times 0.5) \text{ m} = 45 \text{ m}^3.$ ∴ Lateral surface area = 2(I + b) x h

 $= [2(15 + 6) \times 0.5] \text{ m}^2$

 $= (2 \times 21 \times 0.5) \text{ m} = 21 \text{ m}^2$ ∴ Total surface area = 2(lb+ bh + lh)

 $= 2(15 \times 6 + 6 \times 0.5 + 15 \times 0.5) \text{ m}^2$

 $= 2(90+3+7.5) \text{ m}^2$ $= (2 \times 100.5) \text{ m}^2$

 $=201 \, \text{m}^2$

(iv) Length = 24 m, breadth = 25 cm =0.25 m, height = 6m. \therefore Volume of cuboid = $1 \times b \times h$

 $= (24 \times 0.25 \times 6) \text{ m}^3.$

 $= 36 \,\mathrm{m}^3$.

∴ Lateral surface area = 2(I + b) x h $= [2(24 + 0.25) \times 6] \text{ m}^2$

 $= (2 \times 24.25 \times 6) \text{ m}^2$ $= 291 \,\mathrm{m}^2$

∴ Total surface area =2(lb+ bh + lh)

 $=2(24 \times 0.25 + 0.25 \times 6 + 24 \times 6) \text{ m}^2$ $= 2(6+1.5+144) \text{ m}^2$

 $= (2 \times 151.5) \text{ m}^2$ $=303 \, \text{m}^2$.

Question 2: Length of Cistern = 8 m Breadth of Cistern = 6 m

 $= 2(48 + 15 + 20) \text{ m}^2$ $= (2 \times 83) \text{ m} = 166 \text{ m}^2$

And Height (depth) of Cistern = 2.5 m : Capacity of the Cistern = Volume of cistern \therefore Volume of Cistern = $(l \times b \times h)$

 $= (8 \times 6 \times 2.5) \text{ m}^3$

Area of the iron sheet required = Total surface area of the cistem. ∴ Total surface area = 2(lb +bh +lh) $= 2(8 \times 6 + 6 \times 2.5 + 2.5 \times 8) \text{ m}^2$

Question 3: Length of a room = 9m,

Breadth of a room = 8m And height of room = 6.5 m ∴ Area of 4 walls = Lateral surface area

= 2 (l+b) x h $= [2 (9+8) \times 6.5] \text{ m}^2$

 $= (2 \times 17 \times 6.5) \text{ m}^2$

 $=221 \, \text{m}^2$: Area not be whitewashed = (area of 1 door) + (area of 2 windows) $= (2 \times 1.5) \text{ m}^2 + (2 \times 1.5 \times 1) \text{ m}^2$

 $=3m^2+3m^2=6m^2$ \therefore Area to be whitewashed = (221-6) m² = 215 m²

: Cost of whitewashing the walls at the rate of Rs.6.40 per Square meter = Rs. (6.40 x 215) = Rs. 1376

Question 4: Length of plank = 5m = 500 cm

Breadth of plank = 25 m Height of plank = 10 cm Volume of plank = $l \times b \times h$ $= (500 \times 25 \times 10) \text{ cm}^3$ Now,

Length of pit = 20 m = 2000 cm= 6m = 600cmBreadth of pit Height of pit = 80 cm $= (2000 \times 600 800) \text{ cm}^3$ Volume of one pit

Volume of pit \therefore Number of planks that can be stored = $\frac{\cdot \cdot \cdot \cdot \cdot}{\text{Volume of plank}}$

 $\frac{(2000 \times 600 \times 80)}{(500 \times 25 \times 10)} = 768$

Question 5: Length of wall = 8m = 800cm

Breadth of wall = 6m = 600 cmHeight of wall = 22.5 cmVolume of wall $= 1 \times b \times h$ $= (800 \times 600 \times 22.5) \text{ cm}^3$ Length of brick = 25cm Breadth of brick = 11.25 cmHeight of brick = 6 cm

Volume of brick $= (25 \times 11.25 \times 6) \text{cm}^3$ Volume of the wall Number of bricks required = Volume of brick

 $=\frac{(800\times600\times22.5)}{(25\times11.25\times6)}=6400$

S Aggarwal Class 9 Mathematics Solution

Downloaded from www.studiestoday.com

Height of wall =4m $= (15 \times 0.3 \times 4) \text{ m}^3 = 18 \text{m}^3$ Volume of the wall Volume of mortar = $\left(\frac{1}{12} \times 18\right) = 1.5 \text{ m}^3$ Volume of wall = (18 - 1.5)m³ = $16.5 = \frac{33}{2}$ m³

Length of brick

Height of brick

External length of cistern

Length of brick = 22 cm Breadth of brick = 12.5 cm

Length of wall

Breadth of wall

Question 6:

Question 7:

cistern

 $=\left(\frac{33}{16000}\right)$ m³ $\therefore \text{Number of bricks} = \frac{\text{Volume of bricks}}{\text{Volume of 1brick}}$ $=\left(\frac{33}{2}\times\frac{16000}{33}\right)=8000$

Volume of 1 brick = $\left(\frac{22}{100} \times \frac{12.5}{100} \times \frac{7.5}{100}\right) \text{m}^3$

= 15m

= 0.3 m

= 22 cm

External breadth of cistern = 1.08 m = 108 cm External height of cistern = 90cm External volume of cistern $= (135 \times 108 \times 90) \text{ cm}^3$ =1312200 cm3 $= (135 - 2 \times 2.5) \text{ cm}$ Internal length of cistern = (135 - 5) cm = 130 cmInternal breadth of cistern = $(108 - 2 \times 2.5)$ cm = (108 - 5) cm = 103 cm = (90 - 2.5) cm = 87.5 cm Internal height of cistern Capacity of the cistern = Internal volume of

 $= (130 \times 103 \times 87.5) \text{ cm}^3$ = 1171625 cm³ Volume of the iron used = External volume of the cistern -Internal volume of the cistern

Question 8:

 $= 140575 \, \text{cm}^3$

= (1312200 -1171625) cm3

 $= 1.35 \, \text{m} = 135 \, \text{cm}$

S Aggarwal Class 9 Mathematics Solution Depth of the river = 2 m= 45 m

Breadth of the river = 45 m

Length of the river = 3 K M /h =
$$\left(\frac{3 \times 1000}{60}\right)$$
 m/min = 50 m /min.

Volume of water running into the sea per minute = $(50 \times 45 \times 2)$ m³

 $= 4500 \, \text{m}^3$

Total cost of sheet = Rs. 1620

Question 9:

Cost of metal sheet per square meter = Rs.30
Area of the sheet required =
$$\left(\frac{\text{Total cost}}{\text{rate /m}^2}\right)$$
 sq.m.

$$= \left(\frac{1620}{30}\right) \text{sq.m} = 54 \text{ sq.m.}$$

Now, Let the height of the box be x meters.
$$\cdot \cdot$$
 Area of the sheet = Total surface area of the box.

$$= 2(b + bh + h)$$

$$54 = 2(5 \times 3 + 3 \times x + 5 \times x)$$

$$54 = 2(15 + 3x + 5x)$$

$$x = \frac{24}{16} = 1.5m$$

The height of the box = 1.5 m.

30 + 16x = 54 16x = 54 - 30

Length of room

Question 10:

 $= 10 \, \text{m}$

∴ Length of the longest pole = length of diagonal
=
$$\sqrt{l^2 + b^2 + h^2}$$

$$= \sqrt{100 + 100 + 25} = \sqrt{225} = 15 \text{ m}$$

 \therefore The length of the longest pole that can be put in a room with

 $=\sqrt{10^2+10^2+5^2}$

Question 11:

Height of hall =
$$4.5 \text{ m}$$

Volume of hall = $l \times b \times h$
= $(20 \times 16 \times 4.5) \text{ m}^3$

Volume of air needed per person = 5 m³

∴ Number of persons =
$$\left(\frac{\text{Volume of the hall}}{\text{Volume of air needed per person}}\right)$$

$$= \left(\frac{20 \times 16 \times 4.5}{5}\right) = 288.$$

Question 12:

Length of classroom = 10mBreadth of classroom = 6.4 m

> Height of classroom = 5 m Each student is given 1.6 m² of the floor area. Number of students = $\frac{\text{(area of the room)}}{\text{(area of the room)}}$

$$= \frac{(10 \times 6.4)}{1.6} = \frac{64}{1.6} = 40$$

$$\therefore \text{ Number of students} = 40$$

$$\text{Polytred by each student} = \frac{\text{Volume of the room}}{\text{Volume of the room}}$$

∴ Air required by each student
$$= \left(\frac{\text{Volume of the room}}{\text{number of students}} \right) m^3$$
$$= \left(\frac{10 \times 6.4 \times 5}{40} \right) m^3 \left(\frac{320}{40} \right) m^3$$
$$= 8m^3$$

 $= I \times b \times h$

⇒ 1536 = (16 x 3x x 2x)
⇒ 1536 = 96x²
⇒
$$x^2 = \frac{1536}{96} = 16$$

∴ $x = \sqrt{16} = 4 \text{ m}$.
∴ Breadth of the cuboid = 3x = 3 x 4 = 12m

Volume of cuboid

1536

Surface area of a cuboid = 758 cm²

And height of the cuboid=
$$2x = 2x \cdot 4 = 8 \text{ m}$$

Let the height of the cuboid =
$$h cm$$

Surface area of cuboid = $2(/b + bh + /h)$
 $\Rightarrow 758 = 2(14 \times 11 + 11 \times h + 14 \times h)$
 $\Rightarrow 758 = 2(154 + 11h + 14h)$
 $\Rightarrow 758 = 2(154 + 25h)$
 $\Rightarrow 758 = 308 + 50h$
 $\Rightarrow 50 h = 758 - 308$

$$h = \frac{450}{50} = 9 \text{ cm}.$$
we begin to f the cuboid = 9 cm.

$$\therefore$$
 The height of the cuboid = 9 cm

Question 14:

S Aggarwal Class 9 Mathematics Solution (a) Each edge of a cube = 9m Volume of a cube

(a) Each edge of a cube = 9m

$$\therefore$$
 Volume of a cube = a^3
= $(9)^3 \text{ m}^3 = 729 \text{ m}^3$
 \therefore Lateral surface area of cube = $4a^2$
= $4 \times (9)^2$
= $(4 \times 81) \text{ m}^2$
= 324 m^2

Total surface area of a cube =
$$6a^2$$

= $6 \times (9)^2$
= $(6 \times 81) \text{ m}^2$
= 486 m^2
∴ Diagonal of cube = $\sqrt{3} \text{ a}$
= $\sqrt{3} \times 9$

= 6 x (9)²
= (6 x 81) m²
= 486 m²
∴ Diagonal of cube =
$$\sqrt{3}$$
 a
= $\sqrt{3}$ × 9
= (1.73 x 9) m = 15.57 m
ach edge of a cube = 6.5 cm

(b) ∴

=
$$486 \text{ m}^2$$

∴ Diagonal of cube = $\sqrt{3} \text{ a}$
= $\sqrt{3} \times 9$
= $(1.73 \times 9) \text{ m} = 15.57 \text{ m}$
Each edge of a cube = 6.5 cm
Volume of a cube = $a^3 = (6.5)^3 \text{ cm}^3$
= 274.625 cm^3
∴ Lateral surface area of a cube = $4a^2$
= $4 \times (6.5)^2 \text{ cm}^2$
= $(4 \times 42.25) \text{ cm}^2$
= 169 cm^2
Total surface area of a cube = $6a^2$
= $6 \times (6.5)^2 \text{ cm}^2$
= $(6 \times 42.25) \text{ cm}^2$
= $253 \times 5 \text{ m}^2$

= (1.73 x 9) m = 15.57 m
Each edge of a cube = 6.5 cm
Volume of a cube =
$$a^3$$
 = (6.5) 3 cm 3
=274.625 cm 3
∴ Lateral surface area of a cube = $4a^2$
= $4 \times (6.5)^2$ cm 2
= (4×42.25) cm 2
= 169 cm 2
Total surface area of a cube = $6a^2$
= $6 \times (6.5)^2$ cm 2
= (6×42.25) cm 2
= 253.5 m 2
Diagonal of cube = $\sqrt{3}$ a
= $\sqrt{3} \times 6.5$
= (1.73 x 6.5) cm

$$= 4 \times (0.3)^{2} \text{ cm}^{2}$$

$$= (4 \times 42.25) \text{ cm}^{2}$$

$$= 169 \text{ cm}^{2}$$
Total surface area of a cube = $6a^{2}$

$$= 6 \times (6.5)^{2} \text{cm}^{2}$$

$$= (6 \times 42.25) \text{ cm}^{2}$$

$$= 253.5 \text{ m}^{2}$$

$$\therefore \text{ Diagonal of cube} = \sqrt{3} \text{ a}$$

$$= \sqrt{3} \times 6.5$$

$$= (1.73 \times 6.5) \text{ cm}$$

$$= 11.245 \text{ cm}.$$

Question 16:

Let each side of the cube be a cm.

Then, the total surface area of the cube = $(6a^{2}) \text{ cm}^{2}$

$$= (4 \times 42.25) \text{ cm}^2 \\ = 169 \text{ cm}^2$$
Total surface area of a cube = $6a^2$

$$= 6 \times (6.5)^2 \text{cm}^2$$

$$= (6 \times 42.25) \text{ cm}^2$$

$$= 253.5 \text{ m}^2$$

$$\Rightarrow \sqrt{3} \times 6.5$$

$$= (1.73 \times 6.5) \text{ cm}$$

$$= 11.245 \text{ cm}.$$
Question 16:

Let each side of the cube be a cm.

Then, the total surface area of the cube = $(6a^2) \text{ cm}^2$

$$\therefore 6a^2 = 1176$$

$$\Rightarrow a^2 = \frac{1176}{6} = 196$$

$$\Rightarrow a = \sqrt{196} = 14 \text{ cm}$$

$$\therefore \text{ Volume of the cube} = a^3$$

$$= (14)^3 = (14 \times 14 \times 14) \text{ cm}^3$$

$$= 2744 \text{ cm}^3.$$
Question 17:

Let each side of the cube be a cm

Then, the lateral surface area of the cube = $(4a^2) \text{ cm}^2$

$$\therefore \qquad 4a^2 = 900$$

$$\Rightarrow \qquad 900 \qquad 335$$

⇒
$$a^2 = \frac{900}{4} = 225$$

∴ $a = \sqrt{225} = 15 \text{ cm}$
∴ Volume of the cube = a^3
= $(15)^3 = (15 \times 15 \times 15) \text{cm}^3$
= 3375 cm^3 .

Volume of the cube =
$$512 \text{ cm}^3$$
 [Volume = a^3]

 \therefore Each edge of the cube = $\sqrt[3]{512} = 8 \text{ cm}$.

 \therefore Surface area of cube = $6a^2$
= $6 \times (8)^2 \text{ cm}^2$
= $(6 \times 64) \text{ cm}^2$
= 384 cm^2

Question 18:

S Aggarwal Class 9 Mathematics Solution Volume of the new cube = $[(3)^3 + (4)^3 + (5)^3]$ cm = (27 + 64 + 125) cm²

 $= 216 \text{ cm}^2$ Now edge of this cube a^3 Lateral surface area of the new cube = $4a^2$ cm². = $4 \times (6)^2 \text{ cm}^2$ = $(4 \times 36) \text{ cm}^2$

 $= 144 \text{ cm}^2$

... The lateral surface area of the new cube formed =144 cm².

 $= 1000 \, \text{m}^3$

Question 20:

Exercise 13B

1 hectare = 10000 m² Area = $2 \text{ hectares} = 2 \times 10000 \text{ m}^2$ Depth of the ground = 5 cm = $\frac{3}{100}$ m

Volume of water = (area x depth)

 $= \left(2 \times 10000 \times \frac{5}{100}\right) \text{m}^3$

· Volume of water that falls =1000 m3

Question 1:

Question 2:

Here, r = 5 cm and h=21 cmVolume of the cylinder = $(\Pi r^2 h)$

 $= \left(\frac{22}{7} \times 5^2 \times 21\right) \text{cm}^3$

 $=\left(\frac{22}{7}\times25\times21\right)$ cm³

 $=2\times\left(\frac{22}{7}\times5\times21\right)cm^2$

 $= 1650 \text{ cm}^3$. \therefore Curved surface area of a cylinder = (2 Π rh)

S Aggarwal Class 9 Mathematics Solution Here, diameter = 28 cm

∴ Curved surface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$

$$\therefore \text{ Curved surface area} = (2\Pi \text{rh})$$

$$= \left(2 \times \frac{22}{7} \times 14 \times 40\right) \text{ c}$$

$$= \left(2 \times \frac{22}{7} \times 14 \times 40\right) \text{c}$$

$$= 3520 \text{ cm}^2$$

Here, radius (r) = 10.5 cm and height = 60 cm. \cdot Volume of the cylinder = $(\Pi r^2 h)$

Here, curved surface area = 1210 cm²

Diameter = $20 \text{cm} \Rightarrow \text{radius} = \frac{20}{2} = 10 \text{cm}$

 \therefore Volume of the cylinder = $(\Pi r^2 h)$

· Volume of the cylinder =6050cm3.

Downloaded from www.studiestoday.com

 $1210 = 2 \times \frac{22}{7} \times 10 \times h$

 \therefore Curved surface area of the cylinder = $2\Pi rh$

 $h = \left(\frac{1210 \times 7}{2 \times 22 \times 10}\right) cm = 19.25 cm$

 \therefore Volume of the cylinder = $(\Pi r^2 h)$

Question 3:

Question 4:

Question 5:

$$= \left(2 \times \frac{22}{7} \times 14 \times 40\right) c$$

$$= 3520 \text{ cm}^2$$

$$\therefore \text{ Total surface area} = (2\Pi \text{rh} + 2\Pi \text{r}^2)$$

$$= \left(2 \times \frac{22}{7} \times 14 \times 40\right) c$$

$$= 3520 \text{ cm}^2$$
Total surface area = $(2 \text{Tr} h + 2 \text{Tr}^2)$

$$= \left(2 \times \frac{22}{7} \times 14 \times 40\right) c$$

$$= 3520 cm^{2}$$

$$= \left(2 \times \frac{22}{7} \times 14 \times 40\right) c$$

$$= 3520 \text{ cm}^2$$

Curved surface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$
= 3520 cm^2

Curved surface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$

ed surface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) cm^2$
= $3520 cm^2$

d surface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$

height = 40 cm
urface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$

height = 40 cm
surface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$

height = 40 cm
surface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$

height = 40 cm
surface area = (2
$$\Pi$$
rh)
= $\left[2 \times \frac{22}{7} \times 14 \times 40\right]$ cr

height = 40 cm
surface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$

height = 40 cm
surface area =
$$(2\Pi rh)$$

= $\left[2 \times \frac{22}{3} \times 14 \times 40\right] cr$

height = 40 cm
urface area =
$$(2\Pi rh)$$

= $\left[2 \times \frac{22}{2} \times 14 \times 40\right] c$

Surface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$

urface area =
$$(2\Pi rh)$$

= $\left[2 \times \frac{22}{7} \times 14 \times 40\right] c$

urface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{7} \times 14 \times 40\right) c$

urface area =
$$(2\Pi rh)$$

= $\left[2 \times \frac{22}{7} \times 14 \times 40\right] cn$

height = 40 cm
urface area =
$$(2\Pi rh)$$

= $\left(2 \times \frac{22}{2} \times 14 \times 40\right) c$

height = 40 cm

$$\therefore \text{ Curved surface area} = (2\Pi \text{rh})$$

 $= \left(\frac{22}{7} \times 14^2 \times 40\right) \text{cm}^3$

 $= 24640 \text{ cm}^3$.

= 20790 cm $^{\!3}$ $\dot{\cdot}$ Weight of the solid cylinder if the material of the

Weighs 5 g per cm³ = $(20790 \times 5) = 103950 \text{ g}$

 $= 103.95 \, \text{kg}$

 $= \left(\frac{22}{7} \times 14 \times 14 \times 40\right) \text{cm}^3$

 $= \left(2 \times \frac{22}{7} \times 14 \times 40 + 2 \times \frac{22}{7} \times 14^{2}\right)$

 $= \left(\frac{22}{7} \times 10.5 \times 10.5 \times 60\right) \text{ cm}^3$

 $=\left(\frac{22}{7}\times10^2\times19.25\right)$ cm³

 $=\left(\frac{22}{7}\times10\times10\times19.25\right)$ cm³

[::1000g = 1 kg]

S Aggarwal Class 9 Mathematics Solution Let base radius be r and height be h $2\Pi rh = 4400 cm^2$ Then, And

Then,
$$2\Pi rh = 4400 \text{ cm}^2$$
And $2\Pi rh = 4400 \text{ cm}^2$

$$\Rightarrow \frac{2\Pi rh}{2\Pi r} = \frac{4400}{110}$$

$$\Rightarrow h = 40 \text{ cm}$$

$$\therefore 2 \times \frac{22}{7} \times r \times h \times 40 = 4400 \text{ cm}.$$

$$\Rightarrow r = \left(\frac{4400 \times 7}{7}\right) \text{ cm} = \frac{35}{7} \text{ cm}$$

$$r = \left(\frac{4400 \times 7}{44 \times 40}\right) \text{cm} = \frac{35}{2} \text{ cm}.$$
Volume of the cylinder = $\Pi r^2 h$

$$= \left(\frac{22}{7} \times \frac{35}{2} \times \frac{35}{2} \times 40\right) \text{cm}^3$$

 $= 38500 \text{ cm}^3$. Question 6:

 \Rightarrow

Let the radius (r) =
$$2x$$
 cm and height (h) = $3x$ cm
Then, Volume of cylinder = $(\Pi r^2 h)$

Volume = $\left| \frac{22}{7} \times (2x)^2 \times 3x \right|$

Volume =
$$\left[\frac{22}{7} \times (2x)^2 \times 3x\right]$$

Volume = $\left[\frac{22}{7} \times 4x^2 \times 3x\right]$
Volume = $\frac{22}{7} \times 12x^3$

Volume =
$$\frac{22}{7} \times 12x^3$$

 $1617 = \frac{22}{7} \times 12x^3$

$$1617 = \frac{22}{7} \times 12x^{3}$$
[: volume given = 1617cm³]
$$12x^{3} = \frac{1617 \times 7}{22}$$

$$12x^{3} = \frac{1617 \times 7}{22}$$
$$x^{3} = \frac{1617 \times 7}{22 \times 12} = \left(\frac{7}{2}\right)^{3}$$

$$x^{3} = \frac{1017 \times 7}{22 \times 12} = \left(\frac{7}{2}\right)$$

$$x = \frac{7}{2}$$

$$radius = 2x = 2 \times \frac{7}{2} = 7cm$$

and height =
$$3x = 3 \times \frac{7}{2} = \frac{21}{2}$$
 cm]
T otal surface area = $2\Pi r(h + r)$
= $2 \times \frac{22}{7} \times 7\left[\frac{21}{2} + 7\right]$ cm

$$= 2 \times \frac{22}{7} \times 7 \left(\frac{21}{2} + 7 \right) \text{cm}^2$$
$$= 44 \times \left(\frac{21 + 14}{2} \right) \text{cm}^2$$

$$= (22 \times 35) \text{cm}^2 = 770 \text{cm}^2$$

S Aggarwal Class 9 Mathematics Solution Curved surface area = $\frac{1}{3}$ × (total surface area)

Curved surface area =
$$\frac{1}{3}$$
 × (total surface area)
= $\left(\frac{1}{3} \times 462\right)$ cm² = 154cm²
(Total surface area) - (Curved surface area)
= (462-154) cm²=308 cm²
 \Rightarrow 2 Π r² = 308
 \Rightarrow 2 × $\frac{22}{7}$ × r² = 308

=
$$(462-154) \text{ cm}^2 = 308 \text{ cm}^2$$

⇒ $2\Pi r^2 = 308$
⇒ $2 \times \frac{22}{7} \times r^2 = 308$
⇒ $r^2 = \frac{308 \times 7}{44} = 49$
⇒ $r = \sqrt{49} = 7 \text{ cm}$
Now, curved surface area = $2\Pi rh = 154 \text{ cm}^2$
= $2 \times \frac{22}{7} \times 7 \times h = 154 \text{ cm}^2$

$$\Rightarrow r = \sqrt{49} = 7 \text{cm}$$
Now, curved surface area = $2\Pi \text{rh} = 154 \text{ cm}^2$

$$= 2 \times \frac{22}{7} \times 7 \times \text{h} = 154 \text{ cm}^2$$

$$= h = \frac{154}{44} = 3.5 \text{cm}$$
Now, $r = 7 \text{ cm}$ and $h = 3.5 \text{ cm}$
Volume of the cylinder= $(\Pi r^2 h)$

$$= \left(\frac{22}{7} \times 7 \times 7 \times 3.5\right) \text{cm}^3$$

$$= 539 \text{cm}^3$$

Question 8:

Curved surface area =
$$\frac{2}{3}$$
 × (total surface area)

∴ The volume of the cylinder = 539 cm³.

$$= \left(\frac{2}{3} \times 231\right) \text{cm}^2 = 154 \text{ cm}^2$$
(Table of cases)

$$= (231 - 154) \text{ cm}^2 = 77 \text{ cm}^2$$
$$2\pi r^2 = 77 \text{ cm}^2$$

 $\Rightarrow 2 \times \frac{22}{7} \times r^2 = 77$

$$r^{2} = \frac{77 \times 7}{44} = \frac{49}{4}$$

$$\Rightarrow \qquad r = \sqrt{\frac{49}{4}} = \frac{7}{2} \text{cm}$$

$$\sqrt{4} - \sqrt{4} - 2 \cos \theta$$
 $\sqrt{4} - 2 \cos \theta$
 $\sqrt{4}$

ow,
$$2\pi rh = 154 \text{ cm}^2$$

$$\Rightarrow 2 \times \frac{22}{7} \times \frac{7}{2} \times h = 154 \text{ cm}^2$$

$$2 \times \frac{22}{7} \times \frac{7}{2} \times h = 154 \text{ cm}^2$$

$$2 \times \frac{22}{7} \times \frac{7}{2} \times h = 154 \text{ cm}^2$$

 $h = \frac{154}{7} = 7 \text{ cm}$

$$2 \times \frac{22}{7} \times \frac{7}{2} \times h = 154 \text{ cm}^2$$

 $h = \frac{154}{22} = 7 \text{ cm}$

$$2 \times \frac{22}{7} \times \frac{7}{2} \times h = 154 \text{ cm}^2$$
$$h = \frac{154}{22} = 7 \text{ cm}$$

$$\Rightarrow h = \frac{154}{22} = 7 \text{ cm}$$
Now, $r = \frac{7}{2} \text{ cm}$ and $h = 7 \text{ cm}$
Volume of the cylinder = $\pi r^2 h$

Volume of the cylinder =
$$\pi r^2 h$$

= $\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 7\right) \text{cm}^3$
= 269.5 cm³

Question 9:

Here,
$$(r+h)=37 \text{ m} \quad [\cdot \cdot \text{given}]$$

And, total surface area = $2\pi r(r+h)=1628m^2$

$$\Rightarrow \qquad 2\pi r \times 37 = 1628m^2$$

$$\Rightarrow \qquad 2\times \frac{22}{7} \times r \times 37 = 1628$$

$$\Rightarrow \qquad \qquad r \qquad = \frac{1628 \times 7}{44 \times 37} = 7 \text{ m}$$

And $\qquad (r+h) = 37 \text{ m}$

$$\Rightarrow \qquad (7+h) = 37$$

$$\Rightarrow \qquad h = 37 - 7 = 30 \text{ m}$$

Volume = $\pi r^3 h$

$$= \left(\frac{22}{7} \times 7 \times 7 \times 30\right) m^3 = 4620 m^3$$
.

```
Question 10:
Curved surface area = 2πrh
                   Total surface area = 2\pi r(h + r)
                  Since they are in the ratio of 1: 2
                                 \frac{-n!!!}{2\pi r(h+r)} = 
                                   2πrh
                                        2h = h+r
                                       2h - h = r
                                2\pi r(h+r) = 616 \text{ cm}^2
                                               = 616 cm<sup>2</sup>
                                                                  [Puttingh = r]
```

$$\Rightarrow r^2 = \frac{616 \times 7}{88} = 49$$

$$\Rightarrow r = \sqrt{49} = 7 \text{ cm}$$
Then, r = 7 cm and h = 7 cm
$$\therefore \text{ Volume} = (\pi r^2 h)$$

 $= \left(\frac{22}{7} \times 7 \times 7 \times 7\right) \text{ cm}^3 = 1078 \text{ cm}^3$: the volume of the cylinder = 1078 cm3.

 $4 \times \frac{22}{7} \times r^2 = 616$

Question 11:

```
1 \text{cm}^3 = 1 \text{ cm} \times 1 \text{cm} \times 1 \text{cm} and 1 \text{cm} = 0.01 \text{m}
Therefore,
Volume of the
gold = 0.01m \times 0.01m \times 0.01m = 0.000001m^3.....(1)
Diameter of the wire drawn = 0.1 mm
Radius of the wire drawn = \frac{0.1}{100} mm = 0.05mm
                             r = 0.00005 \text{ m}
Length of the wire = h m
Volume of the wire drawn = Volume of the gold
            =0.000001
\Rightarrow \pi \times 0.00005 \times 0.00005 \times h = 0.000001 [from equations (1), (2) and (3)]
                              0.000001×7
                     h= 0.00005× 0.00005× 22
```

Question 12:

h= 127.27m .. thelength of the wire is 127.27m

S Aggarwal Class 9 Mathematics Solution Let the radii of the two cylinders be 2R and 3R. And their heights be 5H and 3H.

Then,
$$\frac{V_1}{V_2} = \frac{\pi \times (2R)^2}{\pi \times (3R)^2} \frac{x \cdot 5H}{x \cdot 3H} = \frac{\pi \times 4R^2}{\pi \times 9R^2} \frac{x \cdot 5H}{x \cdot 3H} = \frac{20}{27}$$

.: the ratio of their volumes = 20:27

Now, $\frac{S_1}{S_2} = \frac{2\pi}{2\pi} \frac{(2R)}{(3R)} \frac{(5H)}{(3H)} = \frac{10}{9}$

$$S_2 = 2\pi$$
 (3R) (3H) 9
∴ the ratio of their curved surface = 10:9

Question 13: For the tin having square base,

side= 12 cm and height = 17.5 cm. : $Volume = (12x 12x 17.5) cm^3 = 2520 cm^3$

> Now, diameter of tin with cylindrical base = 12 cm \therefore radius= $\left(\frac{12}{2}\right)$ cm= 6cm and height= 17.5cm

> > $= 540 \text{ cm}^3$.

:. Volume = $\left(\frac{22}{7} \times 6 \times 6 \times 17.5\right)$ cm³ = 1980 cm³

Tin with square base has more capacity by (2520 – 1980) cm³

Question 14:

Here, cylindrical bucket has diameter = 28 cm. \therefore radius = $\left(\frac{28}{2}\right)$ cm = 14 cm and height = 72 cm.

Length of the tank = 66 cm Breadth of the tank=28cm

Volume of tank = Volume of cylindrical bucket

 $= \pi r^2 h$ $\begin{aligned} 66 \times 28 \times h &= \frac{22}{7} \times 14 \times 14 \times 72 \\ h &= \left(\frac{22 \times 2 \times 14 \times 72}{66 \times 28}\right) \text{cm} \end{aligned}$

.. The height of the water level in the tank = 24cm.

Internal radius = $\left(\frac{3}{2}\right)$ cm = 1.5cm

Question 15:

external radius= (1.5+ 1)cm = 2.5cm Volume of castiron = $\left[\pi \times (2.5)^2 \times 100 - \pi \times (1.5)^2 \times 100\right] \text{cm}^3$

> $= \pi \times 100 \times [(2.5)^2 - (1.5)^2] \text{cm}^3$ $= \frac{22}{7} \times 100 \times [6.25 - 2.25] \text{cm}^3$

 $=\left(\frac{22}{7}\times100\times4\right)$ cm³ Weight = $\left(\frac{22}{7} \times 100 \times 4 \times \frac{21}{1000}\right)$ kg [$\cdot \cdot 1 \text{kg} = 1000 \text{g}$]

= 26.4 kg: the weight of the iron pipe=26.4kg.

Question 16:

```
=\left(\frac{10.4}{2}\right) cm = 5.2 cm
          and length
and external radius = (5.2+0.8) cm = 6 cm
Required volume = \left[\pi \times (6)^2 \times 25 - \pi \times (5.2)^2 \times 25\right] \text{cm}^3
                                  = \pi \times 25 \left[ (6)^2 - (5.2)^2 \right] \text{ cm}^3
                                  =\frac{22}{7}\times25[36-27.04]cm<sup>3</sup>
```

: the volume of the metal = 704 cm3

Length=7cm= (height) Diameter = 5mm \Rightarrow radius = $(\frac{5}{2})$ mm = 2.5mm

Question 17:

$$= 0.25$$

$$\therefore \text{ Volume of the barrel} = \pi r^2 h$$

 $= \left(\frac{22}{7} \times 0.25 \times 0.25 \times 7\right) \text{cm}^3$

 $\frac{11}{8}$ cm³ is used for writing 330 words.

So, $\left(\frac{1}{5} \times 1000\right)$ cm³ will be used for writing

 $\left(330 \times \frac{8}{11} \times \frac{1}{5} \times 1000\right)$ words

:. Weight of the whole pencil = 2.805 g

Question 18:

Weight of the graphite = $\left[\frac{22}{7} \times (0.05)^2 \times 10 \times 2.1\right]$ g

Question 1:

 $\therefore \text{ Total weight of the pencil } = \left(\frac{33}{200} + \frac{66}{25}\right)g$

 $= \frac{33}{200} g$ Weight of wood $= \left[\frac{22}{7} \times 10 \left\{ (0.35)^2 - (0.05)^2 \right\} \times 0.7 \right]$

Exercise 13C

 $= \left[\frac{22}{7} \times 10 \left(0.1225 - 0.0025 \right) \times 0.7 \right]$

 $= \left(\frac{33+528}{200}\right) g = \frac{561}{200} = 2.805 g$

 $= \left(\frac{22}{7} \times 25 \times 8.96\right) \text{cm}^3$

Here, r=35cm andh=84cm

Downloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solution ∴ Volume of the cone = $\frac{1}{2}\pi r^2 h$ $= \left(\frac{1}{3} \times \frac{22}{7} \times 35 \times 35 \times 84\right) \text{ cm}^3$ = 107800 cm³ $=\left(\pi r \sqrt{h^2+r^2}\right)$ $\left[\because l = \sqrt{h^2 + r^2} \right]$ Curved surface area $= \pi r \sqrt{84^2 + 35^2}$ $=\frac{22}{7} \times 35 \times 91$ = 10010 cm² ∴ Total surface area = πr(l+r) $I = \sqrt{h^2 + r^2}$ Now, $=\sqrt{7056+1225}=\sqrt{8281}=91$ cm Total surface area = $\frac{22}{7}$ x35(91+35) =(22x5x126)cm2 = 13860cm2 Question 2: Here, height (h) = 6 cm and slant height (ℓ) = 10 cm

 $radius(r) = \sqrt{\ell^2 - h^2}$

$$= \sqrt{10^{2} - 6^{2}} = \sqrt{100 - 36}$$

$$= \sqrt{64} = 8 \text{ cm}$$

$$\therefore \text{ Volume of cone} = \frac{1}{3} \pi r^{2} h$$

$$= \left(\frac{1}{3} \times 3.14 \times 8 \times 8 \times 6\right) \text{cm}^{3}$$

=
$$401.92 \text{ cm}^3$$

:: Curved surface area = $\pi r \ell$
= $(3.14 \times 8 \times 10) \text{ cm}^2$
= 251.2 cm^2
Total surface area = $\pi r (\ell + r)$

Total surface area =
$$\pi r (\ell + r)$$

= $\pi r (10 + 8)$
= $(3.14 \times 8 \times 18) \text{ cm}^2$
= 452.16 cm^2

$$= \pi r (10 + 8)$$

$$= (3.14 \times 8 \times 18) \text{ cm}^2$$

$$= 452.16 \text{ cm}^2$$

Volume of the cone = $\frac{1}{3}\pi r^2h$

Question 3: Here, Volume = (100π) cm³, height(h) = 12 cm

$$\Rightarrow 100 \pi = \frac{1}{3} \pi \times r^2 \times 12$$

$$\Rightarrow r^2 = \frac{100\pi \times 3}{\pi \times 12}$$

$$\Rightarrow r^2 = 25$$

$$\Rightarrow r = \sqrt{25} = 5 \text{ cm.}$$
Slant height(ℓ) = $\sqrt{h^2 + r^2}$

$$= \sqrt{12^2 + 5^2}$$

∴ Curved surface area =
$$\pi r \ell$$

= $\pi \times 5 \times 13 \text{cm}^2$
= $65\pi \text{ cm}^2$

Slant height, ℓ

Question 5:

 $\ell = \sqrt{144 + 25} = \sqrt{169} = 13 \text{cm}$

S Aggarwal Class 9 Mathematics Solution Here, curved surface area=550cm² and slant height (ℓ) = 25 cm

 $h = \sqrt{\ell^2 - r^2}$

 $= \frac{1}{3} \pi r^2 h$

 $= 15400 \, \text{cm}^3$

 $= 15400 \, \text{cm}^3$

 $=\sqrt{(37)^2-(35)^2}$

 $=\sqrt{1369-1225}=\sqrt{144}=12$ cm

 $= \left(\frac{1}{3} \times \frac{22}{7} \times 35 \times 35 \times 12\right) \text{cm}^3$

slant height
$$(\ell) = 25 \text{ cm}$$

 \therefore Curved surface area = $\pi r \ell$

$$\Rightarrow 550 = \frac{22}{7} \times r \times 25$$

$$\Rightarrow r = \frac{(550 \times 7)}{(550 \times 7)} \text{ cm} = 7 \text{ cm}$$

$$\Rightarrow 550 = \frac{7}{7} \times r \times 25$$

$$\Rightarrow r = \left(\frac{550 \times 7}{22 \times 25}\right) \text{cm} = 7 \text{ cm}$$
Now, height (h) = $\sqrt{\ell^2 - r^2}$

Now, height(h) =
$$\sqrt{\ell^2 - r^2}$$

= $\sqrt{(25)^2 - (7)^2}$

$$= \sqrt{(25)^2 - (7)^2}$$

$$= \sqrt{625 - 49}$$

$$= \sqrt{576} = 24 \text{ cm}$$
Theight of the cone = 24 cm

height(h)

Diameter = 70 cm \Rightarrow radius = $\left(\frac{70}{2}\right)$ cm = 35 cm

slant height = 37 cm

 $=\sqrt{(24)^2+(7)^2}$

: length of doth = $\frac{\text{area of cloth}}{\text{width of cloth}} = \left(\frac{550}{2.5}\right) \text{m}$

.. Length of cloth required to make a conical tent = 220 m

 $\ell = \sqrt{576 + 49} = \sqrt{625} = 25 \,\text{m}$

 $=\left(\frac{22}{7}\times7\times25\right)$ m² = 550 m²

Downloaded from www.studiestoday.com

 $4070 = \frac{22}{7} \times 35 \times \ell$

 $\ell = \left(\frac{4070}{110}\right) cm = 37 cm$

Volume of the cone

Volume of the cone

∴ Curved surface area = πr.l

Here, curved surface area = 4070 cm²

Here, radius = 7 m and height(h) = 24 m ∴ slant height(ℓ) = $\sqrt{h^2 + r^2}$

Now, area of cloth = $\pi r \ell$

$$= \sqrt{(25)^{2} - (7)^{2}}$$

$$= \sqrt{625 - 49}$$

$$= \sqrt{576} = 24 \text{ cm}$$

$$\therefore \text{ height of the cone} = 24 \text{ cm}$$

$$= \sqrt{625 - 49}$$

$$= \sqrt{576} = 24 \text{ cm}$$

$$\therefore \text{ height of the cone} = 24 \text{ cm}$$

$$= \sqrt{625 - 49}$$

$$= \sqrt{576} = 24 \text{ cm}$$

$$\therefore \text{ height of the cone} = 24 \text{ cm}$$
Volume of the cone = $\frac{1}{2}\pi r^2 h$

$$= \sqrt{576} = 24 \text{ cm}$$

$$\therefore \text{ height of the cone} = 24 \text{ cm}$$

$$\text{Volume of the cone} = \frac{1}{3} \pi r^2 h$$

$$\therefore \text{ height of the cone} = 24 \text{ cm}$$

$$\text{Volume of the cone} = \frac{1}{3} \pi r^2 h$$

$$= \left(\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24\right) \text{cm}^3$$

∴ Volume of the cone = 1232 cm³

Here, radius, r = 35 cm and slant height, $\ell = 37 \text{ cm}$

$$\therefore \text{ height of the cone} = \sqrt{576}$$

$$\text{Volume of the cone} = \frac{1}{2}\pi r^2 h$$

Question 6:

Question 7:

Question 8:

Question 9:

$$\Rightarrow$$
 r = Now, height(h) = $\sqrt{\frac{1}{2}}$

∴ Curved surface area =
$$\pi r \ell$$

⇒ $550 = \frac{22}{7}$

⇒ $r = \left(\frac{55}{22}\right)$

ant height
$$(\ell) = 25 \text{ cm}$$

Curved surface area = $\pi r \ell$

$$550 = \frac{22}{7} \times r \times 25$$

$$r = \left(\frac{550 \times 7}{23 - 25}\right) \text{cm} = 7 \text{ cm}$$

Aggarwal Class 9 Mathematics Solution Here, height of cone = 3.6 cm and radius = 1.6 cm

After melting, its radius = 1.2 cm Volume of original cone = Volume of cone after melting $\frac{1}{3}\pi \times 1.6 \times 1.6 \times 3.6 = \frac{1}{3}\pi \times 1.2 \times 1.2 \times h$

$$\Rightarrow \qquad \qquad h \qquad = \frac{1}{3}\pi \times 1.6 \times 1.6 \times 3.6$$

$$\Rightarrow \qquad \qquad h \qquad = \frac{\frac{1}{3}\pi \times 1.6 \times 1.6 \times 3.6}{\frac{1}{3}\pi \times 1.2 \times 1.2} = 6.4 \text{ cm}$$

$$\therefore \text{ height of new cone} = 6.4 \text{ cm}$$

Let their heights be h and 3h And, their radii be 3r and r.

Then,
$$V_1 = \frac{1}{3}\pi(3r)^2 \times h$$
 and,
$$V_2 = \frac{1}{3}\pi r^2 \times 3h$$

$$\Rightarrow \frac{V_1}{V_2} = \frac{\frac{1}{3}\pi(3r)^2 \times h}{\frac{1}{3}\pi r^2 \times 3h} = \frac{3}{1}$$

$$V_1 : V_2 = 3 : 1$$

Question 11:

Radius of the cylinder
$$R = (105)$$
 m, and its being the cylinder $R = (105)$ m.

Radius of the cylinder, $R = \left(\frac{105}{2}\right)$ m and its height, H = 3m

length of canvas

 \Rightarrow

Slant height
$$(\ell) = 53 \text{ m}$$

 \therefore area of canvas = $(2\pi \text{RH} + \pi \text{R}\ell)$

$$= \left[\left(2 \times \frac{22}{7} \times \frac{105}{2} \times 3 \right) + \left(\frac{22}{7} \times \frac{105}{2} \times 53 \right) \right] m^2$$

$$= (990 + 8745) m^2$$

$$= 9735 m^2$$

Question 12: Let the radius be r metres and height be h metres.

Area of the base =
$$(11 \times 4) \text{ m}^2 = 44 \text{ m}^2$$

$$\pi r^2 = 44$$

$$\Rightarrow r^2 = \left(44 \times \frac{7}{22}\right) = 14 \,\mathrm{m}$$

$$r^2 = 14m$$

 $= \left(\frac{\text{area of canvas}}{\text{width of canvas}}\right) m$

 $=\left(\frac{9735}{5}\right) = 1947 \text{ m}.$

Volume of the cone =
$$\frac{1}{3}\pi r^2 h$$

$$\therefore \text{ Volume of the cone} = (11 \times 20) \text{ m}^3 = 220 \text{ m}^3$$

$$\Rightarrow 220 = \frac{1}{3} \times \frac{22}{7} \times 14 \times h$$

$$\Rightarrow h = \frac{220 \times 3}{22 \times 2} = 15 \text{ m}$$

Question 13:

S Aggarwal Class 9 Mathematics Solution Here, height of the cylindrical bucket= 32m and radius = 18 cm.

Now, let theradius of the heap be R cm and its slant height be ℓ cm $\pi \times (18)^2 \times 32 = \frac{1}{3} \pi \times R^2 \times 24$ Then,

$$R^{2} = \frac{\pi \times 18 \times 18 \times 32 \times 3}{\pi \times 24} = 1296$$

$$\Rightarrow \qquad \qquad R = \sqrt{1296} = 36 \text{ cm}.$$
Radius of the heap = 36 cm

R =
$$\sqrt{1296}$$
 = 36 cm.
∴ Radius of the heap = 36 cm
Slant height(ℓ) = $\sqrt{h^2 + R^2}$

∴ Radius of the heap = 36 cm
Slant height(
$$\ell$$
) = $\sqrt{h^2 + R^2}$
= $\sqrt{(24)^2 + (36)^2}$
= $\sqrt{576 + 1296}$

Question 14: Let the curved surface areas of cylinder and cone be 8x and 5x.

Then,
$$2\pi rh = 8x$$
(i)

and, $\pi r \sqrt{h^2 + r^2} = 5x$ (ii)

Squaring both sides of equation (i), we have

and,
$$\pi r\sqrt{n^2 + r^2} = 5x(1)$$

Squaring both sides of equation (i), we have
$$(2\pi rh)^2 = (8x)^2$$

$$(2\pi rh)^2 = (8x)^2$$

 $4\pi^2 r^2 h^2 = 64x^2 \dots (iii)$
From (ii) we have,

From (ii) we have,
$$\pi r \sqrt{h^2 + r^2} = 64x^2 \dots (iii)$$
From (ii) we have,
$$\pi r \sqrt{h^2 + r^2} = 5x$$
Squaring both sides,
$$\Rightarrow \qquad \pi^2 r^2 (h^2 + r^2) = 25x^2 \dots (iv)$$

$$\Rightarrow \frac{4\pi^2 r^2 h^2}{\pi^2 r^2 (h^2 + r^2)} = \frac{64}{25} \left[\text{Divide(iii) by (iv)} \right]$$

$$\Rightarrow \frac{h^2}{(h^2 + r^2)} = \frac{16}{25}$$

$$\Rightarrow 9h^2 = 16r^2$$

$$\Rightarrow \frac{r^2}{h^2} = \frac{9}{16}$$

⇒
$$\frac{1}{h} = \frac{3}{4}$$

∴ The ratio of radius and height = 3:4

and diameter = 20 cm

$$\Rightarrow \text{ radius } = \left(\frac{20}{20}\right) = 10 \text{ cm}$$

Question 16:

and diameter = 20 cm
$$\Rightarrow \text{ radius} = \left(\frac{20}{2}\right) = 10 \text{ cm}$$

⇒ radius =
$$\left(\frac{20}{2}\right)$$
 = 10 cm
height(H) of the cone = 42 cm

:. Volume of the pillar = $(\pi r^2 h + \frac{1}{3} \pi r^2 H)$ cm³

$$h)^{2} = (8x)^{2}$$

$$h)^{$$

 $=\sqrt{1872}=43.27$ cm

Downloaded from www.studiestoday.com

 $\therefore \text{ Weight of pillar } = \left(\frac{92400 \times 7.5}{1000}\right) \text{kg} = 693 \text{kg}$

 $= \pi r^2 (h + \frac{1}{3}H) \text{ cm}^3$

 $=\frac{2200}{7}\times[280+14]$

 $=\frac{22}{7}\times10\times10(280+\frac{1}{3}\times42)$ cm³

S Aggarwal Class 9 Mathematics Solution Let the smaller cone have radius = rcm and height =hcm

And, let the radius of the given original cone be R cm Since the two triangles, \triangle OCD and \triangle OAB are similar to each other, we have

Then,
$$\frac{r}{R} = \frac{h}{30} \qquad \left[\because \Delta \text{OCD} \sim \Delta \text{OAB}\right]$$

$$\Rightarrow \qquad \qquad r = \frac{Rh}{30} \qquad(1)$$
 Given that the volume of the small cone is

 $\frac{1}{27}$ of the volume of the given cone. $\frac{1}{3}\pi r^2 h = \frac{1}{27} \times \frac{1}{3}\pi R^2 \times 30$ [given]

$$\Rightarrow \frac{1}{3}\pi \left(\frac{hR}{30}\right)^2 h = \frac{1}{81}\pi R^2 \times 30 \text{ [from (1)]}$$

$$\Rightarrow \frac{1}{3}\pi \frac{h^3 R^2}{900} = \frac{1}{81}\pi R^2 \times 30$$

$$1 \times 30 \times 900 \times 3$$

$$\Rightarrow h^3 = \frac{1 \times 30 \times 900 \times 3}{81}$$

$$\Rightarrow h^3 = 1000 \text{ cm}^3$$

$$\Rightarrow h = 10 \text{ cm}$$

Question 18:

AC = (OA - OC)= (30-10)am = 20am :. the required height = 20 cm

:. Volume of the remaining solid =
$$(\pi r^2 h) - (\frac{1}{3}\pi r^2 h)$$

= $(\pi \times 6 \times 6 \times 10) \text{ cm}^3 - (\frac{1}{2}\pi r^2 h)$

$$= (\pi \times 6 \times 6 \times 10) \text{ cm}^3 - \left(\frac{1}{3}\pi \times 6 \times 6 \times 10\right) \text{ cm}^3$$

$$= \frac{2}{3}\pi \times 6 \times 6 \times 10 \text{ cm}^3$$

$$= \frac{c}{3}\pi \times 6 \times 6 \times 10 \text{ cm}^3$$

$$= \left(\frac{2}{3} \times 3.14 \times 360\right) \text{ cm}^3 = 753.6 \text{ cm}^3$$

$$\therefore \text{ Volume of the remaining solid} = 753.6 \text{ cm}^3$$

Radius of the pipe =
$$\frac{0.5}{2}$$
 = 0.25cm

Length of the pipe = 10 metres = 1000 cm
that flows in 1 min =
$$\left[\pi \times (0.25)^2 \times 1000\right]$$
 cm³

Volume that flows in 1 min =
$$\left[\pi \times (0.25)^2 \times 1000\right]$$
 cm³

$$\therefore \text{ Volume of the conical vessel} = \left[\frac{1}{3}\pi \times (20)^2 \times 24\right] \text{ cm}^3$$

Required time =
$$\left[\frac{\frac{1}{3} \pi \times (20)^2 \times 24}{\pi \times (0.25)^2 \times 1000} \right] min$$
$$= \left[\frac{\frac{1}{3} \pi \times 400 \times 24}{\pi \times 0.0625 \times 1000} \right] min$$

= 51 min 12 sec

130

```
(i)
```

Question 1:

∴ Volume of the sphere =
$$\left(\frac{4}{3}\pi^3\right)$$

= $\left(\frac{4}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 3.5\right)$ cm³
= 179.67 cm³
∴ Surface area of the sphere = $\left(4\pi^2\right)$

Radius of sphere = 3.5 cm

(ii) Radius of the sphere = 4.2cm

=179.67 cm³
:Surface area of the sphere =
$$(4\pi^2)$$

= $\left(4 \times \frac{22}{7} \times 3.5 \times 3.5\right)$ cm²
=154 cm²

Volume of the sphere =
$$\left(\frac{4}{3}\pi r^3\right)$$

= $\left(\frac{4}{3}\times\frac{22}{7}\times4.2\times4.2\times4.2\right)$ cm³
= 310.464cm³
Surface area of the sphere = $\left(4\pi r^2\right)$

∴ Surface area of the sphere =
$$(4\pi r^2)$$

= $\left(4 \times \frac{22}{7} \times 4.2 \times 4.2\right) \text{cm}^2$
= 221.76cm^2
(iii) Radius of sphere = 5 m

∴ Volume of the sphere =
$$\left(\frac{4}{3}\pi r^3\right)$$

= $\left(\frac{4}{3} \times \frac{22}{7} \times 5 \times 5 \times 5\right) m^3$
= 523.81 m^3
∴ Surface area of the sphere = $(4\pi r^2)$

$$= \left(4 \times \frac{22}{7} \times 5 \times 5\right) m^2$$
$$= 314.28 \, m^2$$

Volume of the sphere =
$$\left(\frac{4}{3}\pi r^3\right)$$

$$\Rightarrow 38808 = \frac{4}{3} \times \frac{22}{7} \times r^3 \quad \left[\because \text{Volume} = 38808 \text{ cm}^3\right]$$

$$\Rightarrow r^3 = \frac{38808 \times 3 \times 7}{88} = 9261$$

$$\Rightarrow r = 21 \text{ cm}$$

$$\therefore \text{ Surface area of the sphere} = 4\pi r^2$$

⇒
$$r = 21 \text{ cm}$$

∴ Surface area of the sphere = $4\pi r^2$
= $\left(4 \times \frac{22}{7} \times 21 \times 21\right) \text{ cm}^2$
= 5544 cm^2

$$= \left(4 \times \frac{22}{7} \times 21 \times 21\right) \text{cm}^2$$

$$= 5544 \text{ cm}^2$$
Question 3:
Volume of the sphere = $606.375\text{m}^3 \quad(1)$
Volume of the sphere = $\frac{4}{3}\pi r^3$

$$\Rightarrow 606.375 = \frac{4}{3} \times \frac{22}{3} \times r^3 \quad \text{[from }$$

Volume of the sphere
$$=\frac{4}{3}\pi r^3$$

$$\Rightarrow 606.375 = \frac{4}{3} \times \frac{22}{7} \times r^3 \qquad \text{[from (1)]}$$

$$\Rightarrow r^3 = \frac{606.375 \times 3 \times 7}{4 \times 22}$$

$$= 144.703125$$

$$\Rightarrow r = 5.25 \text{ m}$$
Surface area of the sphere $= 4\pi r^2$

$$= 4 \times \frac{22}{7} \times 5.25 \times 5.25 \text{ m}^2$$

$$= 346.5 \text{ m}^2$$

Question 4:
Let the radius of the sphere be r m. Then, its surface area =
$$(4\pi r^2)$$

$$(4\pi r^2) = 394.24$$

$$[Surface area = 394.24m^2]$$

$$4 \times \frac{22}{7} \times r^2 = 394.24$$

$$r^2 = \left(\frac{394.24 \times 7}{4 \times 22}\right) = 31.36$$

$$r = \sqrt{31.36} = 5.6m$$
Tradius of the sphere = 5.6m

$$r = \sqrt{31.36} = 5.6m$$
∴ radius of the sphere = 5.6m
∴ Volume of the sphere = $\left(\frac{4}{3}\pi r^3\right)$

$$= \left(\frac{4}{3} \times \frac{22}{7} \times 5.6 \times 5.6 \times 5.6\right) m^3$$

$$= 735.91 m^3$$

Question 5:

S Aggarwal Class 9 Mathematics Solution Surface area of sphere = $(4\pi r^2)$ $\left(4\pi r^2\right) = \left(576\pi\right)$

face area of sphere =
$$(4\pi r^2)$$

 \therefore $(4\pi r^2) = (576\pi)$
 $\left[\text{Surface area} = 576\pi \text{ cm}^2\right]$
 \Rightarrow $r^2 = \frac{(576\pi)}{(4\pi)}$
 \Rightarrow $r = \sqrt{144} = 12\text{ cm}$
 $\therefore \text{Volume of the sphere} = \left(\frac{4}{3}\pi r^3\right)$

- (Volume of inner)

$$r = \sqrt{144} = 12 \text{ cm}$$

$$\therefore \text{Volume of the sphere} = \left(\frac{4}{3}\pi r^3\right)$$

$$= \left(\frac{4}{3} \times \pi \times 12 \times 12 \times 12\right) \text{ cm}^3$$

$$= (2304\pi) \text{ cm}^3$$

$$\therefore \text{Volume of the sphere} = (2304\pi) \text{ cm}^3$$

Question 6:

Question 6:

 Outer diameter of spherical shell = 12cm

 radius = 6cm

$$radius = \frac{D}{2}$$

Outer diameter of spherical shell = 8 cm radius = 4cm

Now, Volume of the outer shell =
$$\left(\frac{4}{3}\pi r^3\right)$$

= $\left(\frac{4}{3} \times \frac{22}{7} \times 6 \times 6 \times 6\right)$ cm³
= 905.15cm³

: Volume of the inner shell =
$$\left(\frac{4}{3}\pi r^3\right)$$

= $\left(\frac{4}{3} \times \frac{22}{7} \times 4 \times 4 \times 4\right)$ cm³
= 268.20 cm³

=
$$(905.15 - 268.20)$$
 cm³
= 636.95 cm³
:: Outer surface area = $4\pi r^2$
= $\left(4 \times \frac{22}{7} \times 6 \times 6\right)$ cm²
= 452.57 cm²

Question 7:
Here, diameter of the lead shot = 3mm

$$\therefore radius = \left(\frac{3}{2}\right) mm = \left(\frac{0.3}{2}\right) cm$$

Now, number of lead shots =
$$\frac{[1\text{mm}=10\text{cm}]}{\text{Volume of the cuboid}}$$

$$= \left\{ \frac{(12 \times 11 \times 9)}{\frac{4}{3} \times \frac{22}{7} \times \left(\frac{0.3}{2}\right)^{3}} \right\}$$

$$= \left\{ \frac{\frac{4}{3} \times \frac{22}{7} \times \frac{0.027}{8}}{\frac{12 \times 11 \times 9 \times 3 \times 7 \times 8}{4 \times 22 \times 0.027}} \right\} = 84000$$

$$\therefore \text{ number of lead shots} = 84000.$$

Question 8:

and radius of sphere = 8 cm

$$\therefore \text{ Number of lead balls} = \frac{\text{Volume of the sphere}}{\text{Volume of 1 lead ball}}$$

$$= \frac{\left(\frac{4}{3}\pi R^3\right) \text{ cm}^3}{\left(\frac{4}{3}\pi R^3\right) \text{ cm}^3}$$

∴ number of lead balls=512

Here, radius of 1lead ball = 1cm

Number of featballs =
$$\frac{1}{\text{Volume of 1 lead ball}}$$

= $\frac{\left(\frac{4}{3}\pi R^3\right) \text{ cm}^3}{\left(\frac{4}{3}\pi r^3\right) \text{ cm}^3}$
= $\left\{\frac{\frac{4}{3} \times \frac{22}{7} \times 8^3}{\frac{4}{3} \times \frac{22}{7} \times 1^3}\right\}$
= $\left\{\frac{\frac{4}{3} \times \frac{22}{7} \times 512}{\frac{4}{3} \times \frac{22}{7} \times 1}\right\} = 512$

Question 9:

Here, radius of sphere=3cm Diameter of spherical ball=0.6cm

:. Number of balls =
$$\frac{\text{Volume of the sphere}}{\text{Volume of 1 small ball}}$$

$$= \begin{cases} \frac{4}{3} \times \frac{22}{7} \times 3^3 \text{ cm}^3 \\ \frac{4}{3} \times \frac{22}{7} \times (0.3)^3 \text{ cm}^3 \end{cases}$$

$$= \left\{ \frac{\frac{4}{3} \times \frac{22}{7} \times 27}{\frac{4}{3} \times \frac{22}{7} \times 0.027} \right\} = 1000$$

$$\therefore \text{ number of small balls obtained=1000.}$$

Question 10: Here, radius of sphere = $10.5 \text{ cm} = \left(\frac{21}{2}\right) \text{ cm}$

Radius of smaller cone = 3.5 cm = $\left(\frac{7}{2}\right)$ cm and height = 3 cm

Now number of cones=
$$\frac{\text{Volume of the sphere}}{\text{Volume of 1 small cone}}$$
$$=\frac{\left\{\frac{4}{3}\pi\times\left(\frac{21}{2}\right)^3\text{ cm}^3\right\}}{\left\{\frac{1}{2}\pi\times\left(\frac{7}{2}\right)^2\times3\text{ cm}^3\right\}}$$

$$= \left(\frac{\frac{4}{3} \times \frac{9261}{8}}{\frac{1}{1} \times \frac{49}{1}}\right) = \frac{9261}{\frac{6}{49}}$$

$$\left(\frac{1}{3} \times \frac{49}{4} \times 3\right) = \frac{9261}{6} \times \frac{4}{49} = 126$$

$$\therefore \text{ Number of cones obtained} = 126.$$

Question 11:

Diameter of a sphere=12 cm
$$radius = \frac{Diameter}{2}$$

$$= \frac{12}{2}$$

$$= \frac{12}{2}$$

$$= 6 \text{ cm}$$

$$\therefore \text{ Volume of the sphere} = \frac{4}{3} \pi r^3$$

The sphere is sphere is
$$\frac{4}{3} \times \frac{22}{7} \times 6 \times 6 \times 6$$
 (i)

Diameter of cylinder = 8cm

meter of cylinder =
$$8 \text{ cm}$$

Radiusof cylinder = $\frac{\text{Diameter}}{2}$

Radius of cylinder =
$$\frac{8}{2}$$

Radius of cylinder = 4cm

Height of the cylinder=90cm

Volume of the cylinder=
$$\pi r^2 h$$

∴ Volume of the cylinder=
$$90cm$$

∴ Volume of the cylinder= $\pi r^2 h$
= $\frac{22}{7} \times 4 \times 4 \times 90$ (ii)

Volume of the cylinder=
$$\pi r^2 h$$

= $\frac{22}{7} \times 4 \times 4 \times 90$ (ii)
heres= $\frac{\text{Volume of cylinder}}{1}$

$$= \frac{22}{7} \times 4 \times 4 \times 90$$
 (ii)

theres = Volume of cylinder
Volume of sphere

Number of spheres =
$$\frac{\text{Volume of cylinder}}{\text{Volume of sphere}}$$

Number of spheres = $\frac{\frac{22}{7} \times 4 \times 4 \times 90 \text{ cm}^3}{\frac{4}{3} \times \frac{22}{7} \times 6 \times 6 \times 6 \text{ cm}^3} [\text{(ii)} \div \text{(i)}]$

radius (R) =
$$\left(\frac{6}{2}\right)$$
 cm = 3 cm
Diameter of wire = 2 mm

$$\therefore$$
 radius(r)=1mm=0.1cm
Let the required length of wire be h cm.

Then,
$$\pi \times (r)^2 \times h = \frac{4}{2} \times \pi \times (R)^3$$

$$\pi \times (r)^{2} \times h = \frac{4}{3} \times \pi \times (R)^{3}$$
$$\pi \times (0.1)^{2} \times h = \frac{4}{3} \times \pi \times (3)^{3}$$

$$h = \frac{\frac{4}{3} \times \pi \times 27}{\pi \times (0.1)^2}$$
$$= \left(\frac{4 \times 9}{0.01}\right) \text{cm} = \frac{36}{0.01}$$

Question 12:

S Aggarwal Class 9 Mathematics Solution Here, diameter of sphere=18cm radius of sphere= $\left(\frac{18}{2}\right)$ cm=9cm

tien,
$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times r^2$$

So,

Question 14:

Question 15:

 \Rightarrow

Question 16:

Here, diameter of sphere = 15.6 cm

and, height of cone=31.2cm

∴ Radius of sphere = $\left(\frac{15.6}{2}\right)$ cm=7.8 cm

 $\frac{4}{3}\pi \times R^3 = \frac{1}{3}\pi \times r^2 \times h$

:. Diameter of cone = (2×7.8) cm = 15.6 cm.

Here, diameter of sphere = 28 cm

Diameter of cone=35

Height of the cone = 35.84 cm

 $r^{2} = \frac{\frac{4}{3} \times \pi \times (7.8)^{3}}{\frac{1}{3} \times \pi \times 31.2}$

∴ radius of sphere = $\left(\frac{28}{2}\right)$ cm = 14 cm

: radius of cone = $\left(\frac{35}{2}\right)$ cm = 17.5 cm

 $\therefore \frac{4}{3} \times \pi \times R^3 = \frac{1}{3} \pi \times (r)^2 \times h$

 $h = \frac{\frac{4}{3} \times \pi \times \left(14\right)^3}{\frac{1}{3} \times \pi \times \left(17.5\right)^2}$

Downloaded from www.studiestoday.com

 $= \left(\frac{4 \times 2744}{306.25}\right) \text{cm}$ $= \left(\frac{10976}{306.25}\right) \text{cm} = 35.84 \text{cm}$

 $r^2 = \left(\frac{4 \times 474.552}{31.2}\right) = (60.84) = (7.8)^2$

 $\Rightarrow \frac{4}{3}\pi \times (7.8)^3 = \frac{1}{3}\pi \times r^2 \times 31.2$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 10$$

$$\frac{4}{3}\pi \times (r)^{3} = \pi \times r^{2} \times 10800$$

$$\frac{4}{\pi}\pi \times (9)^{3} = \pi \times r^{2} \times 10800$$

$$\frac{3}{3}\pi \times (r) = \pi \times r^{2} \times 10800$$

$$\frac{4}{3}\pi \times (9)^{3} = \pi \times r^{2} \times 10800$$

$$r^{2} = \frac{\frac{4}{3} \times \pi \times 729}{\pi \times 10800}$$

$$= \frac{4 \times 243}{10800} = \frac{972}{10800} = \frac{9}{100}$$

$$\frac{3}{3}\pi \times (r)^3 = \pi \times r^2 \times 10$$

$$\frac{4}{3}\pi \times (9)^3 = \pi \times r^2 \times 10$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 1$$
$$\frac{4}{3}\pi \times (9)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{2}\pi \times (9)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (9)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (9)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 1$$
$$\frac{4}{3}\pi \times (9)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 10^3$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (9)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 10^4$$

$$\frac{4}{\pi}\pi \times (9)^3 = \pi \times r^2 \times 10^4$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (9)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (9)^3 = \pi \times r^2 \times 1$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 10$$

$$\frac{4}{3}\pi \times (r)^3 = \pi \times r^2 \times 10$$

ne wire=
$$108$$
m= 10
 $\pi \times (r)^3 = \pi \times r^2 \times 108$

Diameter = (2×0.3) cm = 0.6 cm.

$$\pi \times r^2 \times 10800$$

et the radius of the third ball be r cm Then,

t the radius of the third ball be r cm

Then,
$$\frac{4}{3} \times \pi \times (3)^3 = \frac{4}{3}\pi \left(\frac{3}{2}\right)^3 + \frac{4}{3} \times \pi (2)^3 + \frac{4}{3}\pi \times (r)^3$$

$$\Rightarrow \qquad \frac{4}{3} \times \pi \times 27 = \frac{4}{3}\pi \times \frac{27}{8} + \frac{4}{3} \times \pi \times 8 + \frac{4}{3}\pi \times (r)^3$$

$$\Rightarrow \qquad 27 = \frac{27}{8} + 8 + (r)^3$$

$$\Rightarrow \qquad r^3 = \left\{27 - \left(\frac{27}{8} + 8\right)\right\}$$

$$\Rightarrow \qquad r^3 = \left\{27 - \left(\frac{27 + 64}{8}\right)\right\}$$

 $r^3 = \left\{ \frac{216 - 91}{8} \right\}$

$$\Rightarrow 27 = \frac{27}{8} + 8 + (r)^{3}$$

$$\Rightarrow r^{3} = \left\{27 - \left(\frac{27}{8} + 8\right)\right\}$$

$$\Rightarrow r^{3} = \left\{27 - \left(\frac{27 + 64}{8}\right)\right\}$$

$$\Rightarrow r^{3} = \left\{27 - \frac{91}{8}\right\}$$

$$\Rightarrow r^{3} = \frac{125}{8} \Rightarrow r^{3} = \left(\frac{5}{2}\right)^{3}$$

$$\Rightarrow r = \frac{5}{2} = 2.5 \text{ cm}$$

$$\therefore \text{ radius of the third ball} = 2.5 \text{ cm}$$

Let the radii of two spheres be x and 2x and their respective surface areas be S₁ and S₂.

Then,

Question 17:

Then.

Then,
$$\frac{4\pi r^2}{\pi r^2} = \frac{1}{2\pi r^2}$$

$$\frac{4\pi r^2}{4\pi R^2} = \frac{1}{4}$$

$$\Rightarrow \qquad \left(\frac{r}{R}\right)^2 = \left(\frac{1}{2}\right)^2 \Rightarrow \frac{r}{R} = \frac{1}{2}$$

Let
$$V_1$$
 and V_2 be the volumes of the respective

spheres whose radii are r and R

$$\frac{V_1}{V_2} = \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi R^3} = \left(\frac{r}{R}\right)^3 = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

.. the ratio of their volume=1:8.

: the ratio of their surface areas

Question 19:

Let the radius of ball be r cm and R be the

radius of the cylindrical tub. Then,
$$\frac{4}{3} \times \pi \times (r)^3 = \pi \times R^2 \times h$$

$$\Rightarrow \qquad \frac{4}{3} \times \pi \times (r)^3 = \pi \times (12)^2 \times h$$

$$\Rightarrow \frac{4}{3} \times \pi \times (r)^3 = \pi \times (12)^2 \times 6.75$$

$$\Rightarrow (r)^3 = \frac{\pi \times 144 \times 6.75}{\frac{4}{3} \times \pi} = \frac{144 \times 6.75}{\frac{4}{3}}$$

$$r^3 = \frac{972 \times 3}{4} = \frac{2916}{4} = 729$$

$$\Rightarrow r = 9 \text{ cm}$$

$$\therefore \text{ the radius of the ball} = 9 \text{ cm}$$

Question 20: Radius of the cylindrical bucket = 15cm

Height of the cylindrical bucket = 20cm Volume of the water in the bucket = $\pi \times 15 \times 15 \times 20$ cm³ Radius of spherical ball =9cm

Volume of the spherical ball = $\frac{4}{3} \times \pi \times 9 \times 9 \times 9$ cm³.....(1)

Increase in the water level = h cm Volume of the increased water level = $\pi \times 15 \times 15 \times h$ cm³....(2) Equating (1) and (2),

 $\pi \times 15 \times 15 \times h = \frac{4}{3} \times \pi \times 9 \times 9 \times 9$ $h = \frac{\frac{4}{3} \times \pi \times 9 \times 9 \times 9}{\pi \times 15 \times 15}$

Radius of hemisphere = 9cm

Question 21:

Height of cone = 72 cm Let the radius of the base of cone be r cm.

$$\frac{1}{3} \times \pi \times r^2 \times h = \frac{2}{3} \times \pi \times R^3$$

$$\frac{1}{3} \pi \times r^2 \times 72 = \frac{2}{3} \times \pi \times (9)^3$$

$$r^{2} = \frac{\frac{2}{3} \times \pi \times 729}{\frac{1}{3} \times \pi \times 72} = \frac{2 \times 729}{72}$$
$$r^{2} = \frac{1458}{72} = 20.25$$
$$r = 4.5 \text{ cm}$$

: the radius of the base of the cone =
$$4.5$$
 cm.

Question 22:

Aggarwal Class 9 Mathematics Solution Here,internal radius ofhemisphere bowl (R)= 9 cm Diameter of bottle=3cm

Diameter of bottle=3cm

$$\Rightarrow radius (r) = \left(\frac{3}{2}\right) cm$$
and, height of bottle = 4 cm

$$\begin{cases} \frac{2}{3}\pi \end{cases}$$

Number of bottles =
$$\frac{\text{Volume of the bowl}}{\text{Volume of each bottle}}$$

$$= \begin{cases} \frac{2}{3}\pi \times R^3 \\ \frac{2}{3}\pi \times (r)^2 \times h \end{cases}$$

$$= \begin{cases} \frac{2}{3}\pi \times (9)^3 \\ \frac{2}{3}\pi \times (9)^3 \\$$

: the number of bottle required=54.

weight of the shell = 4.092 kg.

 $= \left[\frac{4}{3} \times \frac{22}{7} \times \left\{ (9)^3 - (8)^3 \right\} \times \frac{4.5}{1000} \right] \text{kg}$

 $= \left[\frac{4}{3} \times \frac{22}{7} \times \{729 - 512\} \times \frac{4.5}{1000} \right] \text{kg}$

 $= \left[\frac{4}{3} \times \frac{22}{7} \times 217 \times \frac{4.5}{1000} \right] \text{kg}$

 $= \left(\frac{85932}{21000}\right) kg = 4.092 kg$

Density of metal =
$$4.5 \,\mathrm{g}\,\mathrm{per}\,\mathrm{cm}^3$$

: weight of the shell = $\left[\frac{4}{3}\pi\times\{(R)^3-(r)^3\}\times\mathrm{density}\right]$

