Exercise 7A

Question 1: Here, b = 24 cm and h = 14.5 cm Area of triangle = $\left(\frac{1}{2} \times base \times height\right)$ sq units = $\left(\frac{1}{2} \times 24 \times 14.5\right)$ cm² = 174 cm²

Question 2: Let height = x and base = 3xArea of triangle = $\left(\frac{1}{2} \times base \times height\right)$ sq units \therefore Area of triangle = $\frac{1}{2} \times x \times 3x$ $=\frac{3}{2}x^2$ We know that, 1 hectare = 10000 sq metre Rate of sowing the field per hectare = Rs.58 Total cost of sowing the triangular field = Rs.783 Total cost = Area of the triangular field \times Rs. 58 $\frac{3}{2}x^2 \times \frac{58}{10000} = 783$ $x^2 = \frac{783}{58} \times \frac{2}{3} \times 10000$ sq metre $x^2 = 90000$ sq metre \rightarrow $x = 300 \, m$ ⇒ Hence, height = 300 m and base = 900 m.

Question 3:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions Here, a = 42 cm, b = 34 cm and c = 20 cm Therefore, $s = \frac{42+34+20}{2} = 48$

Here, a = 42 cm, b = 34 cm and c = 20 cm Therefore, s = $\frac{42+34+20}{2}$ = 48 Area = $\sqrt{S(S-a)(S-b)(S-c)}$ = $\sqrt{48(48-42)(48-34)(48-20)}$ = $\sqrt{48 \times 6 \times 14 \times 28}$ = $\sqrt{4 \times 4 \times 3 \times 3 \times 2 \times 14 \times 14 \times 2}$ = $4 \times 3 \times 2 \times 14$ = 336 cm² Longest side = 42 cm \Rightarrow b = 42 cm Let h be the height corresponding to the longest side. Area of the triangle = $\frac{1}{2} \times b \times h$

$$\Rightarrow \frac{1}{2} \times b \times h = 336$$
$$\Rightarrow 42 \times h = 336 \times 2$$
$$\Rightarrow h = \frac{336 \times 2}{42} = 16 \text{ cm}$$

Question 4:

Here, a = 18 cm, b = 24 cm and c = 30 cm Therefore, s = $\frac{18 + 24 + 30}{2}$ = 36 Area = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{36(36-18)(36-24)(36-30)}$ = $\sqrt{36 \times 18 \times 12 \times 6}$ = $\sqrt{6 \times 6 \times 6 \times 3 \times 3 \times 4 \times 6}$ = $6 \times 6 \times 3 \times 2$ = 216 cm² Smallest side = 18 cm

Let h be the height corresponding to the smallest side.

Area of the triangle =
$$\frac{1}{2} \times b \times h$$

$$\Rightarrow \frac{1}{2} \times b \times h = 216$$

$$\Rightarrow 18 \times h = 216 \times 2$$

$$\Rightarrow h = \frac{216 \times 2}{18} = 24 \text{ cm}$$

Question 5:

Here, a = 91 m, b = 98 m and c = 105 m Therefore, $s = \frac{91 + 98 + 105}{2} = \frac{294}{2} = 147$ Area = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{147(147-91)(147-98)(147-105)}$ $=\sqrt{147 \times 56 \times 49 \times 42}$ $=\sqrt{49 \times 3 \times 7 \times 2 \times 2 \times 2 \times 49 \times 7 \times 3 \times 2}$ $=49 \times 3 \times 2 \times 2 \times 7$ $= 4116 \text{ m}^2$ Longest side = $105m \Rightarrow b=105$ Let h be the height corresponding to the longest side. Area of the triangle = $\frac{1}{2} \times b \times h$ $\Rightarrow \frac{1}{2} \times b \times h = 4116$ $\Rightarrow 105 \times h = 2 \times 4116$ $h = \frac{2 \times 4116}{105} = 78.4 \text{ m}$ **Ouestion 6:** Let the sides of the triangle be 5x, 12x and 13x. Its perimeter = (5x + 12x + 13x) = 30x:. 30x = 150 m [given] $\Rightarrow x = \frac{150}{30} = 5 \text{ m}$ Thus, sides of the triangle are; $5x = 5 \times 5 = 25 m$ $12x = 12 \times 5 = 60 \text{ m}$ $13x = 13 \times 5 = 65 \text{ m}$ Let a = 25 m, b = 60 m and c = 65 m. $s = \frac{1}{2} \left(a + b + c \right)$ Now $=\left(\frac{25+60+65}{2}\right)$ m $=\frac{150}{2}$ = 75 m. area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{75(75-25)(75-60)(75-65)}$ $= \sqrt{75 \times 50 \times 15 \times 10}$ $= \sqrt{25 \times 3 \times 25 \times 2 \times 5 \times 3 \times 5 \times 2}$ $=\sqrt{25\times25\times5\times5\times3\times3\times2\times2}$ = 25 × 5 × 3 × 2 = 750 sq m. area of the triangle = 750 sq m.

Question 7:

Let the sides of the triangle be 25x, 17x and 12x. Then, its perimeter = (25x + 17x + 12z) = 54x54x = 540= $x = \frac{540}{54} = 10m.$ = Thus, sides of the triangle are : $25x = 25 \times 10 = 250$ m $17x = 17 \times 10 = 170$ m $12x = 12 \times 10 = 120$ m Let, a = 250 m, b = 170 m and c = 120 m $s = \frac{1}{2}(a+b+c)$ Now. $=\left(\frac{250+170+120}{2}\right)m$ $=\left(\frac{540}{2}\right)m = 270 m$ area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{270(270 - 250)(270 - 170)(270 - 120)}$ $=\sqrt{3\times3\times3\times10\times10\times2\times10\times10\times10\times5\times3}$ $= 3 \times 3 \times 10 \times 10 \times 10 = 9000 \text{ m}^2$ Cost of ploughing the field at the rate of Rs. 18.80 per 10m² $=\frac{18.80}{10} \times 9000 = \text{Rs. } 16920$ Cost of ploughing the field = Rs. 16920.

Question 8:

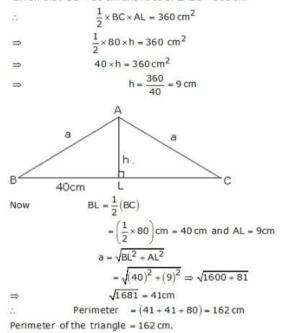
One side of a triangular field = 85 m Second side of a triangular field = 154 m Let the third side of a triangular field be x m Perimeter (given) = 324 m 85m + 154m + xm = 324mx = 324 - 239 \Rightarrow x = 85 m= the third side = 85 m Let a = 85 m, b = 154 m and c = 85 m $S = \frac{1}{2}(a+b+c)$ Now $=\left(\frac{85+154+85}{2}\right)=\frac{324}{2}=162$ area of the triangle = $\sqrt{S(S-a)(S-b)(S-c)}$ = \(162(162-85)(162-154)(162-85)) $=\sqrt{162 \times 77 \times 8 \times 77}$ $= \sqrt{2 \times 9 \times 9 \times 7 \times 11 \times 2 \times 2 \times 2 \times 7 \times 11}$ $=\sqrt{11\times11\times9\times9\times7\times7\times2\times2\times2\times2}$ $= 11 \times 9 \times 7 \times 2 \times 2 = 2772 \text{ m}^2$ area of triangle = 2772 m^2 Also, area of triangle = $\frac{1}{2}$ × base × height $2772 = \frac{1}{2} \times 154 \times h = 77h$ 77h = 2772 $h = \frac{2772}{77} = 36 \text{ m}$: the length of the perpendicular from the opposite vertex on the side measuring 154 m = 36 m.

Question 9:

 $s = \frac{1}{2} \left(a + b + c \right)$ Now, $=\left(\frac{13+13+20}{2}\right)$ Cm $=\frac{46}{2}$ = 23 cm area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{23(23-13)(23-13)(23-20)}$ $=\sqrt{23\times10\times10\times3}$ = 10\(\sqrt{69}\) $= 10 \times 8.306 = 83.06 \text{ cm}^2$ \therefore area of an isosceles triangle = 83.06 cm²

Question 10:

Let ∆ABC be an isosceles triangle and Let AL ⊥ BC. Given that BC = 80 cm and Area of $\triangle ABC = 360 \text{ cm}^2$



Question 11:

In an isosceles triangle, the lateral sides are of equal length.

Let the length of lateral side be x cm. Then, base = $\frac{3}{2} \times x$ cm [given]

Length of each side of the triangle :
 Perimeter of an isosceles triangle = 42 cm

 $\Rightarrow x + x + \frac{3}{2}x = 42 \text{ cm}$ 2x + 2x + 3x = 84 cm 7x = 84⇒ $x = \frac{84}{7} = 12 \text{ cm}$ ∴ length of lateral side = 12 cm And base = $\frac{3}{2}x = \frac{3}{2} \times 12 = 18$ cm : the length of each side of the triangle = 12 cm, 12 cm and 18 cm. (ii) Area of the triangle : Let a = 12 cm, b = 12 cm and c = 18 cm. $s = \frac{1}{2}(a + b + c)$ Now. $=\left(\frac{12+12+18}{2}\right)$ cm $=\left(\frac{42}{2}\right)$ cm = 21 cm : area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{21(21-12)(21-12)(21-18)}$ $= \sqrt{21 \times 9 \times 9 \times 3}$ $= \sqrt{3 \times 7 \times 9 \times 9 \times 3}$ $= 27\sqrt{7} = 71.42 \text{ cm}^2 (\sqrt{7} = 2.64)$ area of the triangle = 71.42 cm². (iii) Height of the triangle :

Area of a triangle = $\frac{1}{2}$ xbase x height $71.42 \text{ cm}^2 = \frac{1}{2} \times 18 \text{ xh}$ $\Rightarrow 71.42 \text{ cm}^2 = 9 \text{ xh}$ $\Rightarrow h = \frac{71.42}{9} = 7.94 \text{ cm}$

... the height of the triangle = 7.94 cm.

Question 12:

Let a be the length of a side of an equilateral triangle. \therefore Area of an equilateral triangle = $\frac{\sqrt{3} \times a^2}{4}$ sq units Area of the equilateral triangle = $36\sqrt{3}$ cm² [given] $\Rightarrow \qquad \frac{\sqrt{3} \times a^2}{4} = 36 \times \sqrt{3}$ $\Rightarrow \qquad a^2 = \frac{36 \times \sqrt{3} \times 4}{\sqrt{3}}$ $\Rightarrow \qquad a^2 = 36 \times 4 = 144$ $\therefore \qquad a = \sqrt{144} = 12$ cm Perimeter of an equilateral triangle = $3 \times a$ Since, a = 12 cm, Perimeter = (3×12) cm = 36 cm

Question 13:

Let a be the length of the side of an equilateral triangle :. Area of an equilateral triangle = $\frac{\sqrt{3}}{4}a^2$ sq units Area of the equilateral triangle = $81\sqrt{3}$ cm² [given] $81\sqrt{3}$ cm² = $\frac{\sqrt{3}}{4}$ a² = $a^2 = \frac{81\sqrt{3} \times 4}{\sqrt{3}} = 324$ = $a = \sqrt{324} = 18 \text{ cm}$ = Height of an equilateral triangle = $\frac{\sqrt{3}}{2}$ a Since a = 18 cm, Height of the equilateral triangle = $\frac{\sqrt{3}}{2} \times 18 = 9\sqrt{3}$ cm. **Question 14:** Base of the right triangle is BC = 48 cm Hypotenuse of the right triangle is AC = 50 cmLet AB = x cmA 50 cm 48 cm By Pythagoras Theorem, we have, $AC^2 = AB^2 + BC^2$ That is we have $50^2 = x^2 + 48^2$ $x^2 = 50^2 - 48^2$ = $x^2 = 2500 - 2304 = 196$ = $x = \sqrt{196} = 14$ cm = :. Area of the right angle triangle = $\frac{1}{2} \times base \times height$ $=\frac{1}{2}\times48\times14$ $=(24 \times 14) \text{ cm}^2 = 336 \text{ cm}^2$

 \therefore Area of the triangle = 336 cm²

Question 15:

(i) Area of an equilateral triangle = $\frac{\sqrt{3}}{4}a^2$ Where a is the side of the equilateral triangle

area = $\frac{\sqrt{3}}{4} \times 8^2$ $= \frac{\sqrt{3}}{4} \times 64 \Rightarrow \sqrt{3} \times 16$ = 1.732 × 16 = 27.712 = 27.71cm². [correct upto 2 decimal places] (ii) Height of an equilateral triangle = $\frac{\sqrt{3}}{2}$ a $=\frac{\sqrt{3}}{2}\times 8$ $= \sqrt{3} \times 4$ = 1.732 × 4 = 6.928 = 6.93cm [Correct upto 2] decimal places]

Question 16:

Let a be the side of an equilateral triangle. :. Height of an equilateral triangle = $\frac{\sqrt{3}}{2}$ a units Height of an equilateral triangle = 9cm [given] $\frac{\sqrt{3}}{2}a = 9$ $a = \frac{9 \times 2}{\sqrt{3}}$ = - $=\frac{9\times2\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}$ [Rationalizing the denominator] = $=\frac{9\times 2\sqrt{3}}{\sqrt{3}\times\sqrt{3}}$ $a = 6\sqrt{3}$ = base = $6\sqrt{3}$ = Area of the equilateral triangle = $\frac{1}{2}$ × base × height $=\frac{1}{2} \times 6\sqrt{3} \times 9$ [: base = $6\sqrt{3}$ and height = 9cm] = 27 \[3 Area of the equilateral triangle = $27 \times 1.732 = 46.764$ $= 46.76 \text{ cm}^2$ [Correct to 2 places of decimal]

Question 17: Let a=50cm, b=20cm and c=50cm. Let us find s: $S = \frac{1}{2} \left(a + b + c \right)$ $=\left(\frac{50+20+50}{2}\right)cm=\left(\frac{120}{2}\right)cm$ Now, area of one triangular piece of cloth $=\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{60(60-50)(60-20)(60-50)}$ $=\sqrt{60 \times 10 \times 40 \times 10}$ $=\sqrt{6 \times 10 \times 10 \times 4 \times 10 \times 10}$ $=\sqrt{10\times10\times10\times10\times2\times2\times2\times3}$ $=10 \times 10 \times 2\sqrt{6}$ $= 200\sqrt{6} = 200 \times 2.45 = 490 \text{ cm}^2$

 \therefore area of one piece of cloth = 490 cm² Now area of 12 pieces = (12×490) cm² = 5880 cm²

Question 18: Let, a = 16 cm, b = 12 and c = 20 cmLet us now find s: $s = \frac{1}{2}(a + b + c)$ $=\left(\frac{16+12+20}{2}\right)$ cm $=\left(\frac{48}{2}\right)$ cm Area of one triangular tile = $\sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{24(24 - 16)(24 - 12)(24 - 20)}$ $= 2 \times 2 \times 2 \times 2 \times 2 \times 3$ $= 96 \, \text{cm}^2$ \therefore Area of one tile = 96 cm² \Rightarrow Area of 16 tiles = 96 × 16 = 1536 cm² Cost of polishing the tiles per sq.cm = Re.1 Thus, the total cost of polishing all the tiles = Rs. (1×1536) = Rs. 1536. **Ouestion 19:** Consider the right triangle ABC. By Pythagoras Theorem, we have, $BC = \sqrt{AB^2 - AC^2}$ $=\sqrt{17^2 - 15^2}$ = $\sqrt{289 - 225}$ = $\sqrt{64}$ = 8 cm Perimeter of quad. ABCD = 17 + 9 + 12 + 8 = 46 cm Area of triangle $\triangle ABC = \frac{1}{2} \times base \times height$ $=\frac{1}{2} \times BC \times AC$ $=\frac{1}{2}\times 8\times 15$ $= 60 \text{ cm}^2$ For area of triangle ACD, Let a = 15 cm, b = 12 cm and c = 9 cmTherefore, $s = \frac{a+b+c}{2} = \frac{15+12+9}{2} = 18 \text{ cm}$ Area of $\triangle ACD = \sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{18(18-15)(18-12)(18-9)}$ $=\sqrt{18\times3\times6\times9}$ $=\sqrt{18\times18\times3\times3}$ $= 18 \times 3 = 54$ cm² Thus the area of quad. ABCD = Area of $\triangle ABC + Area of \triangle ACD$ $= 60 + 54 = 114 \text{ cm}^2$.

Question 20:

Perimeter of quad. ABCD = 34 + 29 + 21 + 42 = 126 cm Area of triangle BCD = $\frac{1}{2} \times 20 \times 21 = 210 \text{ cm}^2$ For area of triangle ABD, Let a = 42 cm, b = 20 cm and c = 34 cmTherefore, $s = \frac{42 + 20 + 34}{2} = \frac{96}{2} = 48 \text{ cm}$ Area of ABD = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{48(48-42)(48-20)(48-34)}$ $=\sqrt{48\times6\times28\times14}$ $=\sqrt{16\times3\times3\times2\times2\times14\times14}$ $= 4 \times 3 \times 2 \times 14 = 336 \text{ cm}^2$ Area of quad. ABCD = Area $\triangle ABD$ + Area $\triangle BCD$ Thus the area of quad. ABCD = $336 + 210 = 546 \text{ cm}^2$. Question 21: Consider the right triangle ABD. By Pythagoras Theorem, we have $AB = \sqrt{BD^2 - AD^2}$: AB = $\sqrt{26^2 - 24^2}$ = √676 - 576

 $=\sqrt{100}$ AB = 10 cm

⇒base =10 cm

Area of the triangle ABD = $\frac{1}{2}$ × base × height ⇒ Area of $\triangle ABD = \frac{1}{2} \times 10 \times 24$ [: base = 10 cm, height = 24 cm]

 \Rightarrow Area of \triangle ABD=120 cm²

Area of equilateral triangle BCD = $\frac{\sqrt{3}}{4}a^2$ $\Rightarrow = \frac{1.73}{4}(26)^2 [a = 26 \text{ cm}, \sqrt{3} = 1.73]$ $\Rightarrow = 292.37 \text{ cm}^2$ Area of quad. ABCD = Area of \triangle ABD + Area of \triangle BCD = 120 + 292.37 = 412.37 \text{ cm}^2.

Question 22:

Consider the triangle ABC, Let a = 26 cm, b = 30 cm and c = 28 cm s = $\frac{26+30+28}{2} = \frac{84}{2} = 42$ cm Area of ABC = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{42(42-26)(42-30)(42-28)}$ = $\sqrt{42\times16\times12\times14}$ = $\sqrt{14\times3\times16\times4\times3\times14}$ = $\sqrt{14\times3\times16\times4\times3\times14}$ = $14\times3\times4\times2$ = 336 cm² In a parallelogram , diagonal divides the parallelogram in two equal area therefore

:. Area of quad. ABCD = Area of \triangle ABC + Area of \triangle ACD = Area of \triangle ABC × 2

Question 23:

Consider the triangle ABC, Let a = 10 cm, b = 16 cm and c = 14 cm s = $\frac{10+16+14}{2} = \frac{40}{2} = 20$ Area of ABC = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{20(20-10)(20-16)(20-14)}$ = $\sqrt{20\times10\times4\times6}$ = $\sqrt{10\times2\times10\times4\times3\times2}$ = $\sqrt{10\times10\times4\times2\times2\times3}$ = $10\times2\times2\times\sqrt{3}$ = $40\sqrt{3}$ cm²

In a parallelogram , diagonal divides the parallelogram in two equal area therefore

: Area of quad. ABCD = Area of \triangle ABC + Area of \triangle ACD = Area of \triangle ABC × 2 = $40\sqrt{3} \times 2$ = $80\sqrt{3}$ cm²

= 138.4cm² [:: $\sqrt{3}$ = 1.73]

Question 24:

Area of triangle ABD =
$$\frac{1}{2} \times base \times height$$

= $\frac{1}{2} \times BD \times AL$
= $\frac{1}{2} \times 64 \times 16.8$
= 537.6 cm²
Area of triangle BCD = $\frac{1}{2} \times base \times height$
= $\frac{1}{2} \times BD \times CM$
= $\frac{1}{2} \times 64 \times 13.2$
= 422.4 cm²
Area of quad. ABCD = Area of $\triangle ABD$ + Area of $\triangle BCD$
= 537.6 + 422.4 = 960 cm².