Selina ICSE Class 10 Maths Solutions Chapter 8 Remainder And Factor Theorems

Selina ICSE Solutions

Question 1. Find in each case the remainder when:
(i) š‘„4 āˆ’ 3š‘„2 + 2š‘„ + 1 is divided by š‘„ āˆ’ 1.
(ii) š‘„3 āˆ’ 3š‘„2 āˆ’ 12š‘„ + 4 is divided by š‘„ āˆ’ 2.
(iii) š‘„4 + 1 is divided by š‘„ + 1.
Solution:
(i) š‘„4 āˆ’ 3š‘„2 + 2š‘„ + 1 is divided by š‘„ āˆ’ 1.

š‘„ āˆ’ 1 = 0
š‘„ = 1
Put the value of x in given equation.
š‘„4 āˆ’ 3š‘„2 + 2š‘„ + 1
(1)4 āˆ’ 3(1)2 + 2(1) + 1
1 āˆ’ 3(1) + 2 + 1
1 āˆ’ 3 + 2 + 1
4 āˆ’ 3 = 1
Hence, the reminder is 1.
(ii) š‘„3 āˆ’ 3š‘„2 āˆ’ 12š‘„ + 4 is divided by x āˆ’ 2.
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of x in given equation.
š‘„3 āˆ’ 3š‘„2 āˆ’ 12š‘„ + 4
(2)3 + 3(2)2 āˆ’ 12(2) + 4
8 + 3(4) āˆ’ 24 + 4
8 + 12 āˆ’ 24 + 4
24 āˆ’ 24 = 0
Hence, the reminder is 0.
(iii) š‘„4 + 1 is divided by š‘„ + 1.
š‘„ + 1 = 0
š‘„ = āˆ’1
Put the value of x in given equation.
š‘„4 + 1
(āˆ’1)4 + 1
1 + 1 = 2
Hence, the reminder is 2.

Question 2. Show that:
(i) š‘„ āˆ’ 2 is a factor of 5š‘„2 + 15š‘„ āˆ’ 50.
(ii) 3š‘„ + 2 is a factor of 3š‘„2 āˆ’ š‘„ āˆ’ 2.
Solution:

(i) It is given that,
š‘„ āˆ’ 2 is the factor of 5š‘„2 + 15š‘„ āˆ’ 50
So,
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
š‘“(š‘„) = 5š‘„2 + 15š‘„ āˆ’ 50
š‘“(2) = 5(2)2 + 15(2) āˆ’ 50
š‘“(2) = 5 Ɨ 4 + 30 āˆ’ 50
š‘“(2) = 20 + 30 āˆ’ 50
š‘“(2) = 50 āˆ’ 50
š‘“(2) = 0
Hence, it is proved that š‘„ āˆ’ 2 is a factor of 5š‘„2 + 15š‘„ āˆ’ 50.
(ii) It is given that,
3š‘„ + 2 is the factor of 3š‘„2 āˆ’ š‘„ āˆ’ 2
So,
3š‘„ + 2 = 0
š‘„ = āˆ’2/3

Question 3. Use the Remainder Theorem to find which of the following is a factor of 2š‘„3 + 3š‘„2ā€“ 5š‘„ā€“ 6.
(i) š‘„ + 1
(ii) 2š‘„ā€“ 1
(iii) š‘„ + 2
Solution:
(i) It is given that,

š‘„ + 1 is the factor of 2š‘„3 + 3š‘„2ā€“ 5š‘„ā€“ 6
š‘„ + 1 = 0
š‘„ = āˆ’1
Put the value of š‘„ in given equation,
š‘“(š‘„) = 2š‘„3 + 3š‘„2ā€“ 5š‘„ā€“ 6
š‘“(āˆ’1) = 2(āˆ’1)3 + 3(āˆ’1)2 āˆ’ 5(āˆ’1) āˆ’ 6
š‘“(āˆ’1) = 2 Ɨ āˆ’1 + 3 Ɨ 1 āˆ’ 5 Ɨ (āˆ’1) āˆ’ 6
š‘“(āˆ’1) = āˆ’2 + 3 + 5 āˆ’ 6
š‘“(āˆ’1) = āˆ’8 + 8
š‘“(āˆ’1) = 0
Hence, it is proved that š‘„ + 1 is a factor of 2š‘„3 + 3š‘„2ā€“ 5š‘„ā€“ 6.
(ii) It is given that,
2š‘„ āˆ’ 1 is the factor of 2š‘„3 + 3š‘„2ā€“ 5š‘„ā€“ 6
2š‘„ āˆ’ 1 = 0
š‘„ = 1/2

(iii) It is given that,
š‘„ + 2 is the factor of 2š‘„3 + 3š‘„2ā€“ 5š‘„ā€“ 6
š‘„ + 2 = 0
š‘„ = āˆ’2
Put the value of š‘„ in given equation,
š‘“(š‘„) = 2š‘„3 + 3š‘„2ā€“ 5š‘„ā€“ 6
š‘“ (āˆ’2) = 2(āˆ’2)3 + 3(āˆ’2)2ā€“ 5(āˆ’2)ā€“ 6
š‘“ (āˆ’2) = āˆ’16 + 12 + 10ā€“ 6
š‘“ (āˆ’2) = 0
Thus, (x + 2) is a factor of the polynomial f(x).

Question 4. (i) If 2š‘„ + 1 is a factor of 2š‘„2 + š‘Žš‘„ā€“ 3, find the value of a.
(ii) Find the value of k, if 3š‘„ā€“ 4 is a factor of expression 3š‘„2 + 2š‘„ā€“ š‘˜.
Solution:

(i) It is given that,
2š‘„ + 1 is a factor of 2š‘„2 + š‘Žš‘„ā€“ 3
So,
2š‘„2 + š‘Žš‘„ā€“ 3 = 0
We know that,
2š‘„ + 1 = 0
2š‘„ = āˆ’1
š‘„ = āˆ’ 1/2
Put the value of š‘„ in above equation,
2š‘„2 + š‘Žš‘„ā€“ 3 = 0

1 āˆ’ š‘Ž = 3 Ɨ 2
1 āˆ’ š‘Ž = 6
āˆ’š‘Ž = 6 āˆ’ 1
āˆ’š‘Ž = 5
š‘Ž = āˆ’5
Hence, the value of š‘Ž is āˆ’5.
(ii) It is given that,
3š‘„ āˆ’ 4 is a factor of 3š‘„2 + 2š‘„ā€“ š‘˜
So,
3š‘„2 + 2š‘„ā€“ š‘˜ = 0
We know that,
3š‘„ āˆ’ 4 = 0
3š‘„ = 4
š‘„ = 4/3
Put the value of š‘„ in above equation,
3š‘„2 + 2š‘„ā€“ š‘˜ = 0

Question 5. Find the values of constants a and b when š‘„ā€“ 2 and š‘„ + 3 both are the factors of expression š‘„3 + š‘Žš‘„2 + š‘š‘„ā€“ 12.
Solution:

It is given that,
š‘“(š‘„) = š‘„ + š‘Žš‘„2 + š‘š‘„ā€“ 12
š‘„ āˆ’ 2 is the factor of š‘„ + š‘Žš‘„2 + š‘š‘„ā€“ 12
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
(2)3 + š‘Ž(2)2 + š‘(2)ā€“ 12 = 0
8 + 4š‘Ž + 2š‘ā€“ 12 = 0
4š‘Ž + 2š‘ā€“ 4 = 0
2(2š‘Ž + š‘ā€“ 2) = 0
2š‘Ž + š‘ā€“ 2 = 0
2š‘Ž + š‘ = 2 _(1)
š‘„ + 3 is the factor of š‘„ + š‘Žš‘„2 + š‘š‘„ā€“ 12
š‘„ + 3 = 0
š‘„ = āˆ’3
Put the value of š‘„ in given equation,
(āˆ’3)3 + š‘Ž(āˆ’3)2 + š‘(āˆ’3)ā€“ 12 = 0
āˆ’27 + š‘Ž Ɨ 9 āˆ’ š‘ Ɨ 3ā€“ 12 = 0
āˆ’27 + 9š‘Ž āˆ’ 3š‘ā€“ 12 = 0
9š‘Ž āˆ’ 3š‘ā€“ 39 = 0
3(3š‘Ž āˆ’ š‘ā€“ 13) = 0
3š‘Ž āˆ’ š‘ā€“ 13 = 0
3š‘Ž āˆ’ š‘ = 13_____________(2)
From equation 1 we get,
2š‘Ž + š‘ = 2

Question 6. Find the value of k, if 2š‘„ + 1 is a factor of (3š‘˜ + 2)š‘„3 + (š‘˜ā€“ 1).
Solution:

It is given that,
2š‘„ + 1 is a factor of (3š‘˜ + 2)š‘„3 + (š‘˜ā€“ 1)
2š‘„ + 1 = 0
š‘„ = āˆ’ 1/2
Put the value of š‘„ in given equation,
(3š‘˜ + 2)š‘„3+ (š‘˜ā€“ 1) = 0

āˆ’3š‘˜ āˆ’ 2 + 8š‘˜ā€“ 8 = 0
5š‘˜ā€“ 10 = 0
5š‘˜ = 10
š‘˜ = 10/5
š‘˜ = 2
Hence, the value of š‘˜ is 2.

Question 7. Find the value of a, if š‘„ā€“ 2 is a factor of 2š‘„5ā€“ 6š‘„4ā€“ 2š‘Žš‘„3 + 6š‘Žš‘„2 + 4š‘Žš‘„ + 8.
Solution:

It is given that,
š‘“(š‘„) = 2š‘„5ā€“ 6š‘„4ā€“ 2š‘Žš‘„3 + 6š‘Žš‘„2 + 4š‘Žš‘„ + 8 = 0
š‘„ā€“ 2 is a factor of 2š‘„5ā€“ 6š‘„4ā€“ 2š‘Žš‘„3 + 6š‘Žš‘„2 + 4š‘Žš‘„ + 8
š‘„ā€“ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
2(2)5 ā€“ 6(2)4 ā€“ 2š‘Ž(2)3 + 6š‘Ž(2)2 + 4š‘Ž(2) + 8 = 0
2(32) ā€“ 6(16) ā€“ 2š‘Ž(8) + 6š‘Ž(4) + 4š‘Ž(2) + 8 = 0
64ā€“ 96ā€“ 16š‘Ž + 24š‘Ž + 8š‘Ž + 8 = 0
āˆ’24 + 16š‘Ž = 0
16š‘Ž = 24
š‘Ž = 1.5
Hence, the value of š‘Ž is 1.5.

Question 8. Find the values of m and n so that š‘„ā€“ 1 and š‘„ + 2 both are factors of š‘„3 + (3š‘š + 1)š‘„2 + š‘›š‘„ā€“18.
Solution:
It is given that,
š‘“(š‘„) = š‘„3 + (3š‘š + 1)š‘„2 + š‘›š‘„ āˆ’ 18
š‘„ā€“ 1 is a factor of š‘„3 + (3š‘š + 1)š‘„2 + š‘›š‘„ āˆ’ 18
š‘„ā€“ 1 = 0
š‘„ = 1
Put the value of š‘„ in given equation,
š‘„3 + (3š‘š + 1)š‘„2 + š‘›š‘„ āˆ’ 18 = 0
(1)3 + (3š‘š + 1)(1)2 + š‘›(1) āˆ’ 18 = 0
1 + (3š‘š + 1)1 + š‘› āˆ’ 18 = 0
1 + 3š‘š + 1 + š‘› āˆ’ 18 = 0
3š‘š + š‘› āˆ’ 16 = 0____________(1)
š‘„ + 2 is a factor of š‘„3 + (3š‘š + 1)š‘„2 + š‘›š‘„ āˆ’ 18
š‘„ + 2 = 0
š‘„ = āˆ’2
Put the value of š‘„ in given equation,
(āˆ’2)3 + (3š‘š + 1)(āˆ’2)2 + š‘›(āˆ’2) āˆ’ 18 = 0
āˆ’8 + (3š‘š + 1)(4) āˆ’ 2š‘› āˆ’ 18 = 0
āˆ’8 + 12š‘š + 4 āˆ’ 2š‘› āˆ’ 18 = 0
12š‘š āˆ’ 2š‘› āˆ’ 22 = 0
6š‘š āˆ’ š‘› āˆ’ 11 = 0____________(2)
From equation (1) we get, the value of š‘š
3š‘š + š‘› āˆ’ 16 = 0
š‘š = 16āˆ’š‘› /3 _(3)
Put the value of š‘š in equation (2)
6 (16āˆ’š‘›/3 ) āˆ’ š‘› āˆ’ 11 = 0
2(16 āˆ’ š‘›) āˆ’ š‘› āˆ’ 11 = 0
32 āˆ’ 2š‘› āˆ’ š‘› āˆ’ 11 = 0
21 āˆ’ 3š‘› = 0
āˆ’3š‘› = āˆ’21
š‘› = āˆ’21/āˆ’3
š‘› = 7
Put the value of š‘› in equation (3)
š‘š = 16āˆ’7/3
š‘š = 9/3
š‘š = 3
Hence, the value of š‘š is 3 and š‘› is 7.

Question 9. When š‘„3 + 2š‘„2ā€“ š‘˜š‘„ + 4 is divided by š‘„ā€“ 2, the remainder is k. Find the value of constant k.
Solution:

It is given that,
š‘“(š‘„) = š‘„3 + 2š‘„2 + š‘˜š‘„ + 4 = 0
š‘„ āˆ’ 2 is a factor of š‘„3 + 2š‘„2 āˆ’ š‘˜š‘„ + 4
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
š‘„3 + 2š‘„2 āˆ’ š‘˜š‘„ + 4 = š‘˜
(2)3 + 2(2)2 āˆ’ š‘˜(2) + 4 = š‘˜
8 + 2 Ɨ 4 āˆ’ š‘˜(2) + 4 = š‘˜
8 + 8 āˆ’ 2š‘˜ + 4 = š‘˜
20 āˆ’ 2š‘˜ = š‘˜
20 = š‘˜ + 2š‘˜
20 = 3š‘˜
š‘˜ = 20/3
š‘˜ = 6 (2/3)
Hence, the value of k is 6 (2/3).

Question 10. Find the value of š‘Ž, if the division of š‘Žš‘„3 + 9š‘„2 + 4š‘„ā€“ 10 by š‘„ + 3 leaves a remainder 5.
Solution:

It is given that,
š‘“(š‘„) = š‘Žš‘„3 + 9š‘„2 + 4š‘„ āˆ’ 10 = 5
š‘„ + 3 is a factor of š‘„3 + 2š‘„2 āˆ’ š‘˜š‘„ + 4
š‘„ + 3 = 0
š‘„ = āˆ’3
Put the value of š‘„ in given equation,
š‘Žš‘„3 + 9š‘„2 + 4š‘„ āˆ’ 10 = 5
š‘Ž(āˆ’3)3 + 29 + 4(āˆ’3) āˆ’ 10 = 5
āˆ’27š‘Ž + 9 Ɨ 9 āˆ’ 12 āˆ’ 10 = 5
āˆ’27š‘Ž + 81 āˆ’ 12 āˆ’ 10 = 5
āˆ’27š‘Ž + 54 = 0
āˆ’27š‘Ž = āˆ’54
š‘Ž = āˆ’54/āˆ’27
š‘Ž = 2
Hence, the value of š‘Ž is 2.

Question 11. If š‘„3 + š‘Žš‘„2 + š‘š‘„ + 6 has š‘„ā€“ 2 as a factor and leaves a remainder 3 when divided by š‘„ā€“ 3, find the values of a and b.
Solution:

It is given that,
š‘“(š‘„) = š‘„3 + š‘Žš‘„2 + š‘š‘„ + 6 = 0
š‘„ + 2 is a factor of š‘„3 + š‘Žš‘„2 + š‘š‘„ + 6
š‘„ + 2 = 0
š‘„ = āˆ’2
Put the value of š‘„ in given equation,
(2)3 + š‘Ž(2)2 + š‘(2) + 6 = 0
8 + š‘Ž(4) + š‘(2) + 6 = 0
8 + 4š‘Ž + 2š‘ + 6 = 0
4š‘Ž + 2š‘ + 14 = 0
2(2š‘Ž + š‘ + 7) = 0
2š‘Ž + š‘ + 7 = 0 _(1)
š‘„ āˆ’ 3 is a factor of š‘„3 + š‘Žš‘„2 + š‘š‘„ + 6 = 3
š‘„ āˆ’ 3 = 0
š‘„ = 3
Put the value of š‘„ in given equation,
(3)3 + š‘Ž(3)2 + š‘(3) + 6 = 3
27 + š‘Ž(9) + š‘(3) + 6 = 3
27 + 9š‘Ž + 3š‘ + 6 = 3
9š‘Ž + 3š‘ + 33 āˆ’ 3 = 0
9š‘Ž + 3š‘ + 30 = 0
3(3š‘Ž + š‘ + 10) = 0
3š‘Ž + š‘ + 10 = 0 _(2)
From equation (1) we get,
2š‘Ž + š‘ + 7 = 0
š‘ = āˆ’7 āˆ’ 2š‘Ž __(3)
Put the value of b in equation (2)
3š‘Ž + (āˆ’7 āˆ’ 2š‘Ž) + 10 = 0
3š‘Ž āˆ’ 7 āˆ’ 2š‘Ž + 10 = 0
3š‘Ž āˆ’ 2š‘Ž + 3 = 0
š‘Ž = āˆ’3
Put the value of a in equation (3)
š‘ = āˆ’7 āˆ’ 2(āˆ’3)
š‘ = āˆ’7 + 6
š‘ = āˆ’1
Hence, the value of a is -3 and value of b is -1.

Question 12. The expression 2š‘„3 + š‘Žš‘„2 + š‘š‘„ā€“ 2 leaves remainder 7 and 0 when divided by 2š‘„ā€“ 3 and š‘„ + 2 respectively. Calculate the values of a and b.
Solution:

It is given that,
š‘“(š‘„) = 2š‘„3 + š‘Žš‘„2 + š‘š‘„ āˆ’ 2 = 0
2š‘„ āˆ’ 3 is a factor of 2š‘„3 + š‘Žš‘„2 + š‘š‘„ āˆ’ 2
2š‘„ āˆ’ 3 = 0
š‘„ = 3/2
Put the value of š‘„ in given equation,

27 + 9š‘Ž + 6š‘ = 9 Ɨ 4
27 + 9š‘Ž + 6š‘ = 36
9š‘Ž + 6š‘ = 36 āˆ’ 27
9š‘Ž + 6š‘ = 9
3(3š‘Ž + 2š‘) = 9
3š‘Ž + 2š‘ = 9/3
3š‘Ž + 2š‘ = 3__________(1)
š‘„ + 2 is a factor of 2š‘„3 + š‘Žš‘„2 + š‘š‘„ āˆ’ 2 = 0
š‘„ + 2 = 0
š‘„ = āˆ’2
Put the value of š‘„ in given equation,
2(āˆ’2)3 + š‘Ž(āˆ’2)2 + š‘(āˆ’2) āˆ’ 2 = 0
2 Ɨ (āˆ’8) + š‘Ž(4)2 + š‘(āˆ’2) āˆ’ 2 = 0
āˆ’16 + 4š‘Ž āˆ’ 2š‘ āˆ’ 2 = 0
4š‘Ž āˆ’ 2š‘ āˆ’ 18 = 0 _(2)
From equation (1) we get,
3š‘Ž + 2š‘ = 3
š‘Ž = 3āˆ’2š‘/3 ___(3)
Put the value of a in equation (2)
4š‘Ž āˆ’ 2š‘ āˆ’ 18 = 0

Question 13. What number should be added to 3š‘„3 āˆ’ 5š‘„2 + 6š‘„ so that when resulting polynomial is divided by š‘„ā€“ 3, the remainder is 8?
Solution:
Let us assumed that,
š¾ is added to given polynomial
So, the polynomial is,
š‘“(š‘„) = 3š‘„3 āˆ’ 5š‘„2 + 6š‘„ + š‘˜
š‘„ āˆ’ 3 is a factor of 3š‘„3 āˆ’ 5š‘„2 + 6š‘„ + š‘˜ and remainder is 8.
š‘„ āˆ’ 3 = 0
š‘„ = 3
Put the value of š‘„ in given equation,
3š‘„3 āˆ’ 5š‘„2 + 6š‘„ + š‘˜ = 8
3(3)3 āˆ’ 5(3)2 + 6(3) + š‘˜ = 8
3(27) āˆ’ 5(9) + 6(3) + š‘˜ = 8
81 āˆ’ 45 + 18 + š‘˜ = 8
54 + š‘˜ = 8
š‘˜ = 8 āˆ’ 54
š‘˜ = āˆ’46
Hence, the value of k is -46.

Question 14. What number should be subtracted from š‘„3 + 3š‘„2ā€“ 8š‘„ + 14 so that on dividing it with š‘„ā€“ 2, the remainder is 10.
Solution:

Let us assumed that,
š‘˜ is subtracted to given polynomial
So, the polynomial is,
š‘“(š‘„) = š‘„3 + 3š‘„2 āˆ’ 8š‘„ + 14 āˆ’ š‘˜
š‘„ āˆ’ 2 is a factor of š‘„3 + 3š‘„2 āˆ’ 8š‘„ + 14 and remainder is 10.
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
š‘„3 + 3š‘„2 āˆ’ 8š‘„ + 14 āˆ’ š‘˜ = 10
(2)3 + 3(2)2 āˆ’ 8(2) + 14 āˆ’ š‘˜ = 10
8 + 3(4) āˆ’ 8(2) + 14 āˆ’ š‘˜ = 10
8 + 12 āˆ’ 16 + 14 āˆ’ š‘˜ = 10
18 āˆ’ š‘˜ = 10
āˆ’š‘˜ = 10 āˆ’ 18
āˆ’š‘˜ = āˆ’8
š‘˜ = 8
Hence, the value of k is 8.

Question 15. The polynomials 2š‘„3ā€“ 7š‘„2 + š‘Žš‘„ā€“ 6 and š‘„3ā€“ 8š‘„2 + (2š‘Ž + 1)š‘„ā€“ 16 leaves the same remainder when divided by š‘„ā€“ 2. Find the value of ā€˜aā€™.
Solution:

It is given that,
š‘“(š‘„) = 2š‘„3ā€“ 7š‘„2 + š‘Žš‘„ā€“ 6
š‘„ āˆ’ 2 is a factor of 2š‘„3ā€“ 7š‘„2 + š‘Žš‘„ āˆ’ 6
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
š‘“(2) = 2(2)3ā€“ 7(2)2 + š‘Ž(2)ā€“ 6
š‘“(2) = 2(8)ā€“ 7(4) + š‘Ž(2)ā€“ 6
š‘“(2) = 16ā€“ 28 + 2š‘Žā€“ 6
š‘“(2) = 2š‘Žā€“ 18
Again,
š‘”(š‘„) = š‘„3ā€“ 8š‘„2 + (2š‘Ž + 1)š‘„ā€“ 16
š‘„ āˆ’ 2 is a factor of š‘„3ā€“ 8š‘„2 + (2š‘Ž + 1)š‘„ āˆ’ 16
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
š‘”(2) = (2)3 āˆ’ 8(2)2 + (2š‘Ž + 1)(2) āˆ’ 16
š‘”(2) = 8 āˆ’ 8(4) + 4š‘Ž + 2 āˆ’ 16
š‘”(2) = 8 āˆ’ 32 + 4š‘Ž + 2 āˆ’ 16
š‘”(2) = 4š‘Ž āˆ’ 38
It is given that,
Polynomial leaves the same remainder
š‘“(2) = š‘”(2)
2š‘Žā€“ 18 = 4š‘Ž āˆ’ 38
2š‘Ž āˆ’ 4š‘Ž = āˆ’38 + 18
āˆ’2š‘Ž = āˆ’20
š‘Ž = 20/2
š‘Ž = 10
Hence, the value of a is 10.

Question 16. If (š‘„ā€“ 2) is a factor of the expression 2š‘„3 + š‘Žš‘„2 + š‘š‘„ā€“ 14 and when the expression is divided by (š‘„ā€“ 3), it leaves a remainder 52, find the values of a and b.
Solution:

It is given that,
š‘“(š‘„) = 2š‘„3 + š‘Žš‘„2 + š‘š‘„ā€“ 14
š‘„ āˆ’ 2 is a factor of 2š‘„3 + š‘Žš‘„2 + š‘š‘„ā€“ 14
š‘„ āˆ’ 2 = 0
š‘„ = 2
2(2)3 + š‘Ž(2)2 + š‘(2)ā€“ 14 = 0
16 + 4š‘Ž + 2š‘ā€“ 14 = 0
4š‘Ž + 2š‘ + 2 = 0
2š‘Ž + š‘ + 1 = 0
2š‘Ž + š‘ = āˆ’1_________(š‘–)
(š‘„ āˆ’ 3) is a factor of 2š‘„3 + š‘Žš‘„2 + š‘š‘„ā€“ 14 and remainder is 52,
2(3)3 + š‘Ž(3)2 + š‘(3)ā€“ 14 = 52
54 + 9š‘Ž + 3š‘ā€“ 14 = 52
9š‘Ž + 3š‘ + 40 = 52
9š‘Ž + 3š‘ = 12
3š‘Ž + š‘ = 4___________(š‘–š‘–)
From equation (1) we get the value of a,
2š‘Ž + š‘ = āˆ’1

Question 17. Find ā€˜aā€™ if the two polynomials š‘Žš‘„3 + 3š‘„2ā€“ 9 and 2š‘„3 + 4š‘„ + š‘Ž, leave the same remainder when divided by š‘„ + 3.
Solution:

It is given that,
Two polynomial have same remainder.
š‘„ + 3 = 0
š‘„ = āˆ’3
Value of polynomial š‘Žš‘„3 + 3š‘„2ā€“ 9 at š‘„ = āˆ’3 is same as value of polynomial 2š‘„3 + 4š‘„ + š‘Ž š‘Žš‘” š‘„ = āˆ’3
š‘Ž(āˆ’3)3 + 3(āˆ’3)2 ā€“ 9 = 2(āˆ’3)3 + 4(āˆ’3) + š‘Ž
āˆ’27š‘Ž + 27 ā€“ 9 = āˆ’54 ā€“ 12 + š‘Ž
āˆ’27š‘Ž + 18 = āˆ’66 + š‘Ž
āˆ’27š‘Ž āˆ’ š‘Ž = āˆ’66 āˆ’ 18
āˆ’28š‘Ž = āˆ’84
š‘Ž = āˆ’84/āˆ’28
š‘Ž = 3
Hence, the value of a is 3.

Exercise 8B

Question 1. Using the Factor Theorem, show that:
(i) (š‘„ā€“ 2) is a factor of š‘„3ā€“ 2š‘„2ā€“ 9š‘„ + 18.
Hence, factories the expression š‘„3ā€“ 2š‘„2ā€“ 9š‘„ + 18 completely.
(ii) (š‘„ + 5) is a factor of 2š‘„3 + 5š‘„2 ā€“ 28š‘„ā€“ 15.
Hence, factories the expression 2š‘„3 + 5š‘„2 ā€“ 28š‘„ā€“ 15 completely.
(iii) (3š‘„ + 2) is a factor of 3š‘„3 + 2š‘„2ā€“ 3š‘„ā€“ 2.
Hence, factories the expression 3š‘„3 + 2š‘„2ā€“ 3š‘„ā€“ 2 completely.
Solution:

(i) It is given that,
(š‘„ā€“ 2) is a factor of š‘„3ā€“ 2š‘„2 ā€“ 9š‘„ + 18
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
š‘“(2) = (2)3ā€“ 2(2)2 + 9(2) + 18
š‘“(2) = (8)ā€“ 2(4) + 9(2) + 18
š‘“(2) = 8ā€“ 8 + 18 + 18
š‘“(2) = 0
Now,

Factorization of š‘„3ā€“ 2š‘„2ā€“ 9š‘„ + 18 is
(š‘„ āˆ’ 2)(š‘„2 āˆ’ 9)
(š‘„ āˆ’ 2)(š‘„2 āˆ’ (3)2)
(š‘„ āˆ’ 2)(š‘„ āˆ’ 3)(š‘„ + 3)
Hence, the factors of š‘„3ā€“ 2š‘„2ā€“ 9š‘„ + 18 is (š‘„ āˆ’ 2)(š‘„ āˆ’ 3)(š‘„ + 3).
(ii) It is given that,
(š‘„ + 5) is a factor of 2š‘„3 + 5š‘„2 ā€“ 28š‘„ā€“ 15
š‘„ + 5 = 0
š‘„ = āˆ’5
Put the value of š‘„ in given equation,
š‘“(āˆ’5) = 2(āˆ’5)3 + 5(āˆ’5)2 + 28(āˆ’5) āˆ’ 15
š‘“(āˆ’5) = 2(āˆ’125) + 5(25) + 28(āˆ’5) āˆ’ 15
š‘“(āˆ’5) = āˆ’250 + 125 + 140 āˆ’ 15
š‘“(āˆ’5) = āˆ’265 + 265
š‘“(āˆ’5) = 0
Now,

Factorization of 2š‘„3 + 5š‘„2ā€“ 28š‘„ āˆ’ 15 is
(š‘„ + 5)(2š‘„2 āˆ’ 5š‘„ āˆ’ 3)
(š‘„ + 5)(2š‘„2 āˆ’ 6š‘„ + š‘„ āˆ’ 3)
(š‘„ + 5)[2š‘„(š‘„ āˆ’ 3) + 1(š‘„ āˆ’ 3)]
(š‘„ + 5)(2š‘„ + 1)(š‘„ āˆ’ 3)
Hence, the factors of š‘„3ā€“ 2š‘„2ā€“ 9š‘„ + 18 is (š‘„ + 5)(2š‘„ + 1)(š‘„ āˆ’ 3).
(iii) It is given that,
(3š‘„ + 2) is a factor of 3š‘„3 + 2š‘„2 ā€“ 3š‘„ā€“ 2
3š‘„ + 2 = 0
š‘„ = āˆ’ 2/3

Factorization of 3š‘„3 + 2š‘„3ā€“ 3š‘„ āˆ’ 2 is
(3š‘„ + 2)(š‘„3 āˆ’ 1)
(3š‘„ + 2)(š‘„ āˆ’ 1)(š‘„ + 1)
Hence, the factors of 3š‘„3 + 2š‘„3ā€“ 3š‘„ āˆ’ 2 is (3š‘„ + 2)(š‘„ āˆ’ 1)(š‘„ + 1).

Question 2. Using the Remainder Theorem, factorise each of the following completely.
(š‘–) 3š‘„3 + 2š‘„3 āˆ’ 19š‘„ + 6
(š‘–š‘–) 2š‘„3 + š‘„3ā€“ 13š‘„ + 6
(š‘–š‘–š‘–) 3š‘„3 + 2š‘„3ā€“ 23š‘„ā€“ 30
(š‘–š‘£) 4š‘„3 + 7š‘„3 ā€“ 36š‘„ ā€“ 63
(š‘£) š‘„3 + š‘„3 ā€“ 4š‘„ ā€“ 4
Solution:

(š‘–) 3š‘„3 + 2š‘„3 āˆ’ 19š‘„ + 6
Assumed that, 3š‘„3 + 2š‘„3 āˆ’ 19š‘„ + 6 is divided by š‘„ āˆ’ 2
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
3š‘„3 + 2š‘„3 āˆ’ 19š‘„ + 6 = 0
3(2)3 + 2(2)2 āˆ’ 19(2) + 6 = 0
3(8) + 2(4) āˆ’ 19(2) + 6 = 0
24 + 8 āˆ’ 38 + 6 = 0
38 āˆ’ 38 = 0
0 = 0

Factorization of 3š‘„3 + 2š‘„2ā€“ 19š‘„ + 6 is
(š‘„ āˆ’ 2)(3š‘„2 āˆ’ 8š‘„ āˆ’ 3)
(š‘„ āˆ’ 2)(3š‘„2 + 9š‘„ āˆ’ š‘„ āˆ’ 3)
(š‘„ āˆ’ 2)[3š‘„(š‘„ + 3) āˆ’ 1(š‘„ + 3)]
(š‘„ āˆ’ 2)(3š‘„ āˆ’ 1)(š‘„ + 3)
Hence, the factors of 3š‘„3 + 2š‘„2ā€“ 19š‘„ + 6 is (š‘„ āˆ’ 2)(3š‘„ āˆ’ 1)(š‘„ + 3).
(š‘–š‘–) 2š‘„3 + š‘„2 ā€“ 13š‘„ + 6
Assumed that, 2š‘„3 + š‘„2ā€“ 13š‘„ + 6 is divided by š‘„ āˆ’ 2
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
š‘“(š‘„) = 2(2)3 + (2)2ā€“ 13(2) + 6
š‘“(š‘„) = 2(8) + 4ā€“ 26 + 6
š‘“(š‘„) = 16 + 4ā€“ 26 + 6
š‘“(š‘„) =ā€“ 26 + 26
š‘“(š‘„) = 0

Factorization of 2š‘„3 + š‘„2 ā€“ 13š‘„ + 6 is
(š‘„ āˆ’ 2)(2š‘„2 + 5š‘„ āˆ’ 3)
(š‘„ āˆ’ 2)(2š‘„2 + 6š‘„ āˆ’ š‘„ āˆ’ 3)
(š‘„ āˆ’ 2)[2š‘„(š‘„ + 3) āˆ’ 1(š‘„ + 3)]
(š‘„ āˆ’ 2)(2š‘„ āˆ’ 1)(š‘„ + 3)
Hence, the factors of 2š‘„3 + š‘„2ā€“ 13š‘„ + 6 is (š‘„ āˆ’ 2)(2š‘„ āˆ’ 1)(š‘„ + 3).
(š‘–š‘–š‘–) 3š‘„3 + 2š‘„2ā€“ 23š‘„ā€“ 30
Assumed that, 3š‘„3 + 2š‘„2ā€“ 23š‘„ + 30 is divided by š‘„ āˆ’ 2
š‘„ + 2 = 0
š‘„ = āˆ’2
Put the value of š‘„ in given equation,
š‘“(š‘„) = 3(āˆ’2)3 + 2(āˆ’2)2ā€“ 23(āˆ’2) + 30
š‘“(š‘„) = 3(āˆ’8) + 2(4) + 46 + 30
š‘“(š‘„) = 16 + 4ā€“ 26 + 6
š‘“(š‘„) =ā€“ 26 + 26
š‘“(š‘„) = 0

Factorization of 3š‘„3 + 2š‘„2ā€“ 23š‘„ āˆ’ 30 is
(š‘„ + 2)(3š‘„2 āˆ’ 4š‘„ āˆ’ 15)
(š‘„ + 2)(3š‘„2+ 5š‘„ āˆ’ 9š‘„ āˆ’ 3)
(š‘„ + 2)[š‘„(3š‘„ + 5) āˆ’ 3(3š‘„ + 5)]
(š‘„ + 2)(3š‘„ + 5)(š‘„ āˆ’ 3)
Hence, the factors of 3š‘„3 + 2š‘„2ā€“ 23š‘„ āˆ’ 30 is (š‘„ + 2)(3š‘„ + 5)(š‘„ āˆ’ 3).
(š‘–š‘£) 4š‘„3 + 7š‘„2 ā€“ 36š‘„ ā€“ 63
Assumed that, 3š‘„3 + 2š‘„2ā€“ 23š‘„ + 30 is divided by š‘„ āˆ’ 2
š‘„ āˆ’ 3 = 0
š‘„ = 3
Put the value of š‘„ in given equation,
š‘“(š‘„) = 4(3)3 + 7(3)2 ā€“ 36(3) āˆ’ 63
š‘“(š‘„) = 4(27) + 7(9) āˆ’ 36(3) āˆ’ 63
š‘“(š‘„) = 108 + 63ā€“ 108 āˆ’ 63
š‘“(š‘„) = 0

Factorization of 4š‘„3 + 7š‘„2ā€“ 36š‘„ āˆ’ 63 is
(š‘„ + 3)(4š‘„2 āˆ’ 5š‘„ āˆ’ 21)
(š‘„ + 3)(4š‘„2 āˆ’ 12š‘„ + 7š‘„ āˆ’ 21)
(š‘„ + 3)[4š‘„(š‘„ āˆ’ 3) + 7(š‘„ āˆ’ 3)]
(š‘„ + 3)(4š‘„ + 7)(š‘„ āˆ’ 3)
Hence, the factors of 4š‘„3 + 7š‘„2 ā€“ 36š‘„ āˆ’ 63 is (š‘„ + 3)(4š‘„ + 7)(š‘„ āˆ’ 3).
(š‘£) š‘„3 + š‘„2 ā€“ 4š‘„ ā€“ 4
Assumed that, š‘„3 + š‘„2 ā€“ 4š‘„ ā€“ 4 is divided by š‘„ + 1
š‘„ + 1 = 0
š‘„ = āˆ’1
Put the value of š‘„ in given equation,
š‘“(āˆ’1) = (āˆ’1)3 + (āˆ’1)2 ā€“ 4(āˆ’1) āˆ’ 4
š‘“(āˆ’1) = (āˆ’1) + (1) āˆ’ 4(āˆ’1) āˆ’ 4
š‘“(āˆ’1) = āˆ’1 + 1 + 4 āˆ’ 4
š‘“(š‘„) = 0

Factorization of š‘„3 + š‘„2 ā€“ 4š‘„ āˆ’ 4 is
(š‘„ + 1)(š‘„2 āˆ’ 4)
(š‘„ + 1)(š‘„2 āˆ’ (2)2)
(š‘„ + 1)(š‘„ āˆ’ 2)(š‘„ + 3)
Hence, the factors of š‘„3 + š‘„2 ā€“ 4š‘„ āˆ’ 4 is (š‘„ + 1)(š‘„ āˆ’ 2)(š‘„ + 3).

Question 3. Using the Remainder Theorem, factories the expression 3š‘„3 + 10š‘„2 + š‘„ā€“ 6. Hence, solve the equation 3š‘„3 + 10š‘„2 + š‘„ā€“ 6 = 0.
Solution:

It is given that,
3š‘„3 + 10š‘„2 + š‘„ ā€“ 6
Assumed that, 3š‘„3 + 10š‘„2 + š‘„ā€“ 4 is divided by š‘„ + 1
š‘„ + 1 = 0
š‘„ = āˆ’1
Put the value of š‘„ in given equation,
š‘“(āˆ’1) = 3(āˆ’1)3 + 10(āˆ’1)2 + (āˆ’1) āˆ’ 6
š‘“(āˆ’1) = 3(āˆ’1) + 10(1) āˆ’ 1 āˆ’ 6
š‘“(āˆ’1) = āˆ’3 + 10 āˆ’ 1 āˆ’ 6
š‘“(āˆ’1) = 0

Factorization of 3š‘„3 + 10š‘„2 + š‘„ā€“ 6 is
(š‘„ + 1)(3š‘„2 + 7š‘„ āˆ’ 6)
(š‘„ + 1)(3š‘„2 + 9š‘„ āˆ’ 2š‘„ āˆ’ 6)
(š‘„ + 1)[3š‘„(š‘„ + 3) āˆ’ 2(š‘„ + 3)]
(š‘„ + 1)(š‘„ + 3)(3š‘„ āˆ’ 2)
Hence, the factors of 3š‘„3 + 10š‘„2 + š‘„ āˆ’ 6 is (š‘„ + 1)(š‘„ + 3)(3š‘„ āˆ’ 2).

Question 4. Factories the expression š‘“(š‘„) = 2š‘„3 ā€“ 7š‘„2 ā€“ 3š‘„ + 18. Hence, find all possible values of x for which š‘“(š‘„) = 0.
Solution:

It is given that,
2š‘„3 āˆ’ 7š‘„2 āˆ’ 3š‘„ + 18
Assumed that, 2š‘„3 āˆ’ 7š‘„2 āˆ’ 3š‘„ + 18 is divided by š‘„ āˆ’ 2
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
š‘“(2) = 2(2)3 āˆ’ 7(2)2 āˆ’ 3(2) + 18
š‘“(2) = 2(8) + 7(4) āˆ’ 6 + 18
š‘“(2) = 16 āˆ’ 28 āˆ’ 6 + 18
š‘“(2) = 0

Factorization of 2š‘„3 āˆ’ 7š‘„2 āˆ’ 3š‘„ + 18 is
(š‘„ āˆ’ 2)(2š‘„2 āˆ’ 3š‘„ āˆ’ 9)
(š‘„ āˆ’ 2)(2š‘„2 āˆ’ 6š‘„ + 3š‘„ āˆ’ 9)
(š‘„ āˆ’ 2)[2š‘„(š‘„ āˆ’ 3) + 3(š‘„ āˆ’ 3)]
(š‘„ āˆ’ 2)(š‘„ āˆ’ 3)(2š‘„ + 3)
Hence, the factors of 2š‘„3 āˆ’ 7š‘„2 āˆ’ 3š‘„ + 18 is (š‘„ āˆ’ 2)(š‘„ āˆ’ 3)(2š‘„ + 3).

Question 5. Given that š‘„ā€“ 2 and š‘„ + 1 are factors of š‘“(š‘„) = š‘„3 + 3š‘„2 + š‘Žš‘„ + š‘; calculate the values of a and b. Hence, find all the factors of š‘“(š‘„).
Solution:

It is given that,
š‘„3 + 3š‘„2 + š‘Žš‘„ + š‘
Assumed that, š‘„3 + 3š‘„2 + š‘Žš‘„ + š‘ is divided by š‘„ āˆ’ 2
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
š‘“(2) = (2)3 + 3(2)2 + š‘Ž(2) + š‘
š‘“(2) = 8 + 3(4) + 2š‘Ž + š‘
š‘“(2) = 8 + 12 + 2š‘Ž + š‘
š‘“(2) = 20 + 2š‘Ž + š‘
2š‘Ž + š‘ + 20 = 0______________(i)
Assumed that, š‘„3 + 3š‘„2 + š‘Žš‘„ + š‘ is divided by š‘„ + 1
š‘„ + 1 = 0
š‘„ = āˆ’1
Put the value of š‘„ in given equation,
š‘“(āˆ’1) = (āˆ’1)3 + 3(āˆ’1)2 + š‘Ž(āˆ’1) + š‘
š‘“(āˆ’1) = āˆ’1 + 3(1) āˆ’ š‘Ž + š‘
š‘“(āˆ’1) = āˆ’1 + 3 āˆ’ š‘Ž + š‘
š‘“(āˆ’1) = 2 āˆ’ š‘Ž + š‘
2 āˆ’ š‘Ž + š‘ = 0______________(ii)
From equation (i)
2š‘Ž + š‘ + 20 = 0

Factorization of š‘„3 + 3š‘„2 āˆ’ 6š‘„ āˆ’ 8 is
(š‘„ + 1)(š‘„2 + 2š‘„ āˆ’ 8)
(š‘„ + 1)(š‘„2 + 4š‘„ āˆ’ 2š‘„ āˆ’ 8)
(š‘„ + 1)[š‘„(š‘„ + 4) āˆ’ 2(š‘„ + 4)]
(š‘„ + 1)(š‘„ āˆ’ 2)(š‘„ + 4)
Hence, the factors of š‘„3 + 3š‘„2 āˆ’ 6š‘„ āˆ’ 8 is (š‘„ + 1)(š‘„ āˆ’ 2)(š‘„ + 4).

Question 6. The expression 4š‘„3ā€“ š‘š‘„2 + š‘„ā€“ š‘ leaves remainders 0 and 30 when divided by š‘„ + 1 and 2š‘„ā€“ 3 respectively. Calculate the values of b and c. Hence, factorize the expression completely.
Solution:

It is given that,
4š‘„3 āˆ’ š‘š‘„2 + š‘„ āˆ’ š‘ is divided by š‘„ + 1
š‘„ + 1 = 0
š‘„ = āˆ’1
Put the value of š‘„ in given equation,
š‘“(āˆ’1) = 4(āˆ’1)3 āˆ’ š‘(āˆ’1)2 + (āˆ’1) āˆ’ š‘
š‘“(āˆ’1) = 4(āˆ’1) āˆ’ š‘(1) āˆ’ 1 āˆ’ š‘
š‘“(āˆ’1) = āˆ’4 āˆ’ š‘ āˆ’ 1 āˆ’ š‘
š‘“(āˆ’1) = 5 + š‘ + š‘
5 + š‘ + š‘ = 0______________(i)
Also,
4š‘„3 āˆ’ š‘š‘„2 + š‘„ āˆ’ š‘ is divided by 2š‘„ āˆ’ 3 and leaves remainder 30.
2š‘„ āˆ’ 3 = 0

54 āˆ’ 9š‘ + 6 āˆ’ 4š‘ = 30 Ɨ 4
60 āˆ’ 9š‘ āˆ’ 4š‘ = 120
60 āˆ’ 9š‘ āˆ’ 4š‘ āˆ’ 120 = 0
āˆ’9š‘ āˆ’ 4š‘ āˆ’ 60 = 0
āˆ’(9š‘ + 4š‘ + 60) = 0
9š‘ + 4š‘ + 60 = 0______________(ii)
From equation (1) we get the value of š‘Ž
5 + š‘ + š‘ = 0
š‘ = āˆ’5 āˆ’ š‘_(iii)
Put the value of c in equation in equation (ii)
9š‘ + 4š‘ + 60 = 0
9š‘ + 4(āˆ’5 āˆ’ š‘) + 60 = 0
9š‘ āˆ’ 20 āˆ’ 4š‘ + 60 = 0
5š‘ + 40 = 0
š‘ = āˆ’ 40/5
š‘ = āˆ’8
Put the value of b in equation (iii)
š‘ = āˆ’5 āˆ’ (āˆ’8)
š‘ = āˆ’5 + 8
š‘ = 3
So, the required equation is 4š‘„3 + 8š‘„2 + š‘„ āˆ’ 3

Factorization of 4š‘„3 + 8š‘„2 + š‘„ āˆ’ 3 is
(š‘„ + 1)(4š‘„2 + 4š‘„ āˆ’ 3)
(š‘„ + 1)(4š‘„2 + 6š‘„ āˆ’ 2š‘„ āˆ’ 3)
(š‘„ + 1)[2š‘„(2š‘„ + 3) āˆ’ (2š‘„ + 3)]
(š‘„ + 1)(2š‘„ āˆ’ 1)(2š‘„ + 3)
Hence, the factors of 4š‘„3 + 8š‘„2 + š‘„ āˆ’ 3 is (š‘„ + 1)(2š‘„ āˆ’ 1)(2š‘„ + 3).

Question 7. If š‘„ + š‘Ž is a common factor of expressions š‘“(š‘„) = š‘„2 + š‘š‘„ + š‘ž and š‘”(š‘„) = š‘„2 + š‘šš‘„ + š‘›; Show that: š‘Ž = š‘›āˆ’š‘ž/š‘šāˆ’š‘
Solution:

It is given that,
š‘“(š‘„) = š‘„2 + š‘š‘„ + š‘ž
š‘„2 + š‘š‘„ + š‘ž is divided by š‘„ + š‘Ž
š‘„ + š‘Ž = 0
š‘„ = āˆ’š‘Ž
(āˆ’š‘Ž)2 + š‘(āˆ’š‘Ž) + š‘ž = 0
š‘Ž2 āˆ’ š‘Žš‘ + š‘ž = 0
š‘Ž2 = š‘Žš‘ āˆ’ š‘ž(1)
š‘”(š‘„) = š‘„2 + š‘šš‘„ + š‘›
š‘„2 + š‘šš‘„ + š‘› is divided by š‘„ + š‘Ž
š‘„ + š‘Ž = 0
š‘„ = āˆ’š‘Ž
(āˆ’š‘Ž)2 + š‘š(āˆ’š‘Ž) + š‘› = 0
š‘Ž2 āˆ’ š‘Žš‘š + š‘› = 0
š‘Ž2 = š‘Žš‘š āˆ’ š‘›(1)
From equation (1) and (2) we get,
š‘Žš‘ āˆ’ š‘ž = š‘Žš‘š āˆ’ š‘›
š‘› āˆ’ š‘ž = š‘Žš‘š āˆ’ š‘Žš‘
š‘› āˆ’ š‘ž = š‘Ž(š‘š āˆ’ š‘)
š‘Ž = š‘›āˆ’š‘ž/š‘šāˆ’š‘
Hence proved.

Question 8. The polynomials š‘Žš‘„3 + 3š‘„2ā€“ 3 and 2š‘„2ā€“ 5š‘„ + š‘Ž, when divided by š‘„ā€“ 4, leave the same remainder in each case. Find the value of a.
Solution:

Let us assumed that,
š‘“(š‘„) = š‘Žš‘„3 + 3š‘„2ā€“ 3
š‘Žš‘„3 + 3š‘„2 ā€“ 3 is divided by š‘„ā€“ 4
š‘“(4) = š‘Ž(4)3 + 3(4)2 ā€“ 3
š‘“(4) = š‘Ž(64) + 3(16)ā€“ 3
š‘“(4) = 64š‘Ž + 45_________(1)
Let us assumed that,
š‘”(š‘„) = 2š‘„3ā€“ 5š‘„ + š‘Ž
2š‘„3ā€“ 5š‘„ + š‘Ž is divided by š‘„ā€“ 4
š‘”(4) = 2(4)3ā€“ 5(4) + š‘Ž
š‘”(4) = 2(64)ā€“ 20 + š‘Ž
š‘”(4) = 128ā€“ 20 + š‘Ž
š‘”(4) = š‘Ž + 108_________(2)
From equation (1) and (2)
64š‘Ž + 45 = š‘Ž + 108
64š‘Ž āˆ’ š‘Ž = 108 āˆ’ 45
63š‘Ž = 63
š‘Ž = 1
Hence, the value of š‘Ž is 1.

Question 9. Find the value of ā€˜aā€™, if (š‘„ā€“ š‘Ž) is a factor of š‘„3ā€“ š‘Žš‘„2 + š‘„ + 2.
Solution:

Let us assumed that,
š‘“(š‘„) = š‘„3ā€“ š‘Žš‘„2 + š‘„ + 2
š‘„3ā€“ š‘Žš‘„2 + š‘„ + 2 is divided by š‘„ā€“ š‘Ž
š‘„ + š‘Ž = 0
š‘„ = āˆ’š‘Ž
Put the value of š‘„ in given equation,
(š‘Ž)3 + š‘Ž(š‘Ž)2 + š‘Ž + 2 = 0
š‘Ž3 āˆ’ š‘Ž3 + š‘Ž + 2 = 0
š‘Ž + 2 = 0
š‘Ž = āˆ’2
Hence, the value of š‘Ž is āˆ’2.

Question 10. Find the number that must be subtracted from the polynomial 3š‘¦3 + š‘¦2ā€“ 22š‘¦ + 15, so that the resulting polynomial is completely divisible by š‘¦ + 3.
Solution:

Let us assumed that,
The number to be subtracted from the given polynomial be k.
š‘“(š‘¦) = 3š‘¦3 + š‘¦2ā€“ 22š‘¦ + 15
3š‘¦3 + š‘¦2ā€“ 22š‘¦ + 15 is divisible by (š‘¦ + 3).
š‘¦ + 3 = 0
š‘¦ = āˆ’3
Put the value of š‘¦ is āˆ’3.
3(āˆ’3)3 + (āˆ’3)2ā€“ 22(āˆ’3) + 15ā€“ k = 0
3(āˆ’27) + 9 + 66 + 15ā€“ k = 0
āˆ’81 + 9 + 66 + 15 ā€“ k = 0
9 ā€“ k = 0
k = 9
Hence, the number to be subtracted from the polynomial be 9.

Exercise 8C

Question 1. Show that (š‘„ā€“ 1) is a factor of š‘„3ā€“ 7š‘„2 + 14š‘„ā€“ 8. Hence, completely factorize the given expression.
Solution:

It is given that,
š‘„3 āˆ’ 7š‘„2 + 14š‘„ āˆ’ 8
Assumed that, š‘„3 āˆ’ 7š‘„2 + 14š‘„ āˆ’ 8 is divided by š‘„ āˆ’ 1
š‘„ āˆ’ 1 = 0
š‘„ = 1
Put the value of š‘„ in given equation,
š‘“(1) = (1)3 āˆ’ 7(1)2 + 14(1) āˆ’ 8
š‘“(1) = 1 āˆ’ 7 āˆ’ 14 āˆ’ 8
š‘“(1) = 0
š‘„3 āˆ’ 7š‘„2 + 14š‘„ āˆ’ 8 is divided by š‘„ āˆ’ 1

Factorization of š‘„3 āˆ’ 7š‘„2 + 14š‘„ āˆ’ 8 is
(š‘„ āˆ’ 1)(š‘„2 āˆ’ 6š‘„ + 8)
(š‘„ āˆ’ 1)(š‘„2 āˆ’ 2š‘„ āˆ’ 4š‘„ + 8)
(š‘„ āˆ’ 1)[š‘„(š‘„ āˆ’ 2) āˆ’ 4(š‘„ āˆ’ 2)]
(š‘„ āˆ’ 1)(š‘„ āˆ’ 2)(š‘„ āˆ’ 4)
Hence, the factors of š‘„3 āˆ’ 7š‘„2 + 14š‘„ āˆ’ 8 is (š‘„ āˆ’ 1)(š‘„ āˆ’ 2)(š‘„ āˆ’ 4).

Question 2. Using Remainder Theorem, factorize: š‘„3 + 10š‘„2 ā€“ 37š‘„ + 26 completely.
Solution:

It is given that,
š‘„3 + 10š‘„2 āˆ’ 37š‘„ + 26
Assumed that, š‘„3 + 10š‘„2 āˆ’ 37š‘„ + 26 is divided by š‘„ āˆ’ 1
š‘„ āˆ’ 1 = 0
š‘„ = 1
Put the value of š‘„ in given equation,
š‘“(1) = (1)3 + 10(1)2 āˆ’ 37(1) + 26
š‘“(1) = 1 + 10 āˆ’ 37 + 26
š‘“(1) = 37 āˆ’ 37
š‘“(1) = 0
š‘„3 + 10š‘„2 āˆ’ 37š‘„ + 26 is divided by š‘„ āˆ’ 1

Factorization of š‘„3 + 10š‘„2 āˆ’ 37š‘„ + 26 is
(š‘„ āˆ’ 1)(š‘„2 + 11š‘„ āˆ’ 26)
(š‘„ āˆ’ 1)(š‘„2 + 13š‘„ āˆ’ 2š‘„ āˆ’ 26)
(š‘„ āˆ’ 1)[š‘„(š‘„ + 13) āˆ’ 2(š‘„ + 13)]
(š‘„ āˆ’ 1)(š‘„ āˆ’ 2)(š‘„ + 13)
Hence, the factors of š‘„3 + 10š‘„2 āˆ’ 37š‘„ + 26 is (š‘„ āˆ’ 1)(š‘„ āˆ’ 2)(š‘„ + 13).

Question 3. When š‘„3 + 3š‘„2ā€“ š‘šš‘„ + 4 is divided by š‘„ā€“ 2, the remainder is š‘š + 3. Find the value of m.
Solution:

Let us assumed that,
š‘“(š‘„) = š‘„3 + 3š‘„2ā€“ š‘šš‘„ + 4
Assumed that, š‘„3 + 3š‘„2ā€“ š‘šš‘„ + 4 is divided by š‘„ āˆ’ 1 and remainder is š‘š + 3
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
(2)3 + 3(2)2
ā€“ š‘š(2) + 4 = š‘š + 3
8 + 12ā€“ 2š‘š + 4 = š‘š + 3
24ā€“ 3 = š‘š + 2š‘š
3š‘š = 21
š‘š = 7
Hence, the value of š‘š is 7.

Question 4. What should be subtracted from 3š‘„3ā€“ 8š‘„2 + 4š‘„ā€“ 3, so that the resulting expression has š‘„ + 2 as a factor?
Solution:

Let us assumed that,
The required number be k.
š‘“(š‘„) = 3š‘„3ā€“ 8š‘„2 + 4š‘„ā€“ 3
Assumed that, š‘„3 + 3š‘„2ā€“ š‘šš‘„ + 4 is divided by š‘„ + 2
š‘„ + 2 = 0
š‘„ = āˆ’2
Put the value of š‘„ in given equation,
3(āˆ’2)3ā€“ 8(āˆ’2)2 + 4(āˆ’2)ā€“ 3ā€“ š‘˜ = 0
3(āˆ’8)ā€“ 8(4) + 4(āˆ’2)ā€“ 3ā€“ š‘˜ = 0
āˆ’24 ā€“ 32ā€“ 8ā€“ 3ā€“ š‘˜ = 0
āˆ’67ā€“ š‘˜ = 0
š‘˜ = āˆ’67
Hence, the required number is -67.

Question 5. If (š‘„ + 1) and (š‘„ā€“ 2) are factors of š‘„3 + (š‘Ž + 1)š‘„2ā€“ (š‘ā€“ 2)š‘„ā€“ 6, find the values of a and b. And then, factorize the given expression completely.
Solution:

Let us assumed that,
š‘“(š‘„) = š‘„2 + (š‘Ž + 1)š‘„2ā€“ (š‘ā€“ 2)š‘„ā€“ 6
Given that, š‘„2 + (š‘Ž + 1)š‘„2ā€“ (š‘ā€“ 2)š‘„ā€“ 6 is divided by š‘„ + 1
š‘„ + 1 = 0
š‘„ = āˆ’1
Put the value of š‘„ in given equation,
(āˆ’1)3 + (š‘Ž + 1)(āˆ’1)2 ā€“ (š‘ā€“ 2)(āˆ’1)ā€“ 6 = 0
āˆ’1 + (š‘Ž + 1) + (š‘ā€“ 2)ā€“ 6 = 0
š‘Ž + š‘ā€“ 8 = 0__________(š‘–)
Given that, š‘„3 + (š‘Ž + 1)š‘„2ā€“ (š‘ā€“ 2)š‘„ā€“ 6 is divided by š‘„ + 2
š‘„ + 2 = 0
š‘„ = āˆ’2
Put the value of š‘„ in given equation,
(2)3 + (š‘Ž + 1)(2)2 ā€“ (š‘ā€“ 2)(2)ā€“ 6 = 0
8 + 4š‘Ž + 4ā€“ 2š‘ + 4ā€“ 6 = 0
4š‘Žā€“ 2š‘ + 10 = 0
2š‘Žā€“ š‘ + 5 = 0___________(š‘–š‘–)
From equation (i) we get,
š‘Ž = 8 āˆ’ š‘__(š‘–š‘–š‘–)
Put the value of a in equation (ii)
2(8 āˆ’ š‘)ā€“ š‘ + 5 = 0
16 āˆ’ 2š‘ā€“ š‘ + 5 = 0
āˆ’2š‘ā€“ š‘ = āˆ’5 āˆ’ 16
āˆ’3š‘ = āˆ’21
š‘ = āˆ’21/āˆ’3
š‘ = 7
Put the value of b in equation (iii)
š‘Ž = 8 āˆ’ š‘
š‘Ž = 8 āˆ’ 7
š‘Ž = 1
The required equation is,
š‘“(š‘„) = š‘„3 + (1 + 1)š‘„2 ā€“ (7ā€“ 2)š‘„ā€“ 6
š‘“(š‘„) = š‘„3 + 2š‘„2ā€“ 5š‘„ā€“ 6
Hence, it is proved that (š‘„ + 1)(š‘„ā€“ 2) are factor of š‘„3 + 2š‘„2ā€“ 5š‘„ā€“ 6.

Factorization of š‘„3 + 10š‘„2 āˆ’ 37š‘„ + 26 is
(š‘„ āˆ’ 1)(š‘„ āˆ’ 2)(š‘„ + 3)
Hence, the factors of š‘„3 + 2š‘„2 āˆ’ 5š‘„ āˆ’ 6 is (š‘„ + 1)(š‘„ āˆ’ 2)(š‘„ + 3).

Question 6. If š‘„ā€“ 2 is a factor of š‘„2 + š‘Žš‘„ + š‘ and a + b = 1, find the values of a and b.
Solution:

It is given that,
š‘Ž + š‘ = 1_______(š‘–)
Also,
Given that, š‘„2 + š‘Žš‘„ + š‘ is divided by š‘„ āˆ’ 2
š‘„ āˆ’ 2 = 0
š‘„ = 2
Put the value of š‘„ in given equation,
(2)2 + š‘Ž(2) + š‘ = 0
4 + 2š‘Ž + š‘ = 0
2š‘Ž + š‘ = āˆ’4 _(š‘–š‘–)
From equation (i),
š‘Ž + š‘ = 1
š‘Ž = 1 āˆ’ š‘(š‘–š‘–š‘–)
Put the value of a in equation (ii),
2(1 āˆ’ š‘) + š‘ = āˆ’4
2 āˆ’ 2š‘ + š‘ = āˆ’4
āˆ’š‘ = āˆ’4 āˆ’ 2
āˆ’š‘ = āˆ’6
š‘ = 6
Put the value of a in equation (iii),
š‘Ž = 1 āˆ’ š‘
š‘Ž = 1 āˆ’ 6
š‘Ž = āˆ’5
Hence, the value of š‘Ž is -5 and š‘ is 6

Question 7. Factorise š‘„3 + 6š‘„2 + 11š‘„ + 6 completely using factor theorem.
Solution:

It is given that,
š‘„3 + 6š‘„2 + 11š‘„ + 6
Assumed that, š‘„3 + 6š‘„2 + 11š‘„ + 6 is divided by š‘„ + 1
š‘„ + 1 = 0
š‘„ = āˆ’1
Put the value of š‘„ in given equation,
š‘“(āˆ’1) = (āˆ’1)3 + 6(āˆ’1)2 + 11(āˆ’1) + 6
š‘“(āˆ’1) = āˆ’1 + 6 āˆ’ 11 + 6
š‘“(āˆ’1) = 12 āˆ’ 12
š‘“(āˆ’1) = 0
š‘„3 + 6š‘„2 + 11š‘„ + 6 is divided by š‘„ + 1

Factorization of š‘„3 + 6š‘„2 + 11š‘„ + 6 is
(š‘„ + 1)(š‘„2 + 5š‘„ + 6)
(š‘„ + 1)(š‘„2 + 2š‘„ + 3š‘„ + 6)
(š‘„ + 1)[š‘„(š‘„ + 2) + 3(š‘„ + 2)]
(š‘„ + 1)(š‘„ + 2)(š‘„ + 3)
Hence, the factors of š‘„3 + 6š‘„2 + 11š‘„ + 6 is (š‘„ + 1)(š‘„ + 2)(š‘„ + 3).

Question 8. Find the value of ā€˜š‘šā€™, if š‘šš‘„2 + 2š‘„2ā€“ 3 and š‘„2ā€“ š‘šš‘„ + 4 leave the same remainder when each is divided by š‘„ā€“ 2.
Solution:

Let us assumed that,
š‘“(š‘„) = š‘šš‘„2 + 2š‘„2ā€“ 3
š‘”(š‘„) = š‘„2ā€“ š‘šš‘„ + 4
According to the question,
š‘“(š‘„) and š‘”(š‘„) leave the same remainder if divided by (š‘„ā€“ 2).
š‘„ā€“ 2 = 0
š‘„ = 2
We have,
š‘“(2) = š‘”(2)
š‘š(2)3 + 2(2)2ā€“ 3 = (2)2ā€“ š‘š(2) + 4
š‘š(8) + 2(4)ā€“ 3 = 4ā€“ 2š‘š + 4
8š‘š + 8ā€“ 3 = 4ā€“ 2š‘š + 4
8š‘š + 2š‘š = 4 + 4 āˆ’ 8 + 3
10š‘š = 3
š‘š = 3/10
Hence, the value of š‘š is 3/10.

Question 9. The polynomial š‘š‘„3 + 4š‘„2ā€“ 3š‘„ + š‘ž is completely divisible by š‘„2ā€“ 1; find the values of p and q. Also, for these values of p and q factorize the given polynomial completely.
Solution:

Let us assumed that,
š‘“(š‘„) = š‘š‘„3 + 4š‘„2ā€“ 3š‘„ + š‘ž
According to the question,
š‘š‘„3 + 4š‘„2ā€“ 3š‘„ + š‘ž is divisible by (š‘„2ā€“ 1) = (š‘„ + 1)(š‘„ā€“ 1).
š‘“(1) = 0 š‘Žš‘›š‘‘ š‘“(āˆ’1) = 0
š‘“(1) = š‘(1)3 + 4(1)2ā€“ 3(1) + š‘ž = 0
š‘“(1) = š‘ + 4ā€“ 3 + š‘ž = 0
š‘ + š‘ž + 1 = 0 (š‘–)
From (š‘„ + 1) we get,
š‘“(āˆ’1) = š‘(āˆ’1)3 + 4(āˆ’1)2ā€“ 3(āˆ’1) + š‘ž = 0
š‘“(āˆ’1) = š‘(āˆ’1) + 4(1)ā€“ 3(āˆ’1) + š‘ž = 0
š‘“(āˆ’1) = āˆ’š‘ + 4(1) + 3 + š‘ž = 0
āˆ’š‘ + š‘ž + 7 = 0__________(š‘–š‘–)
From equation (i) we get,
š‘ + š‘ž + 1 = 0
š‘ = āˆ’1 āˆ’ š‘ž__(š‘–š‘–š‘–)
Put the value of p in equation (ii)
āˆ’š‘ + š‘ž + 7 = 0
āˆ’(āˆ’1 āˆ’ š‘ž) + š‘ž + 7 = 0
1 + š‘ž + š‘ž + 7 = 0
2š‘ž + 8 = 0
š‘ž = āˆ’4
Put the value of q in equation (iii)
š‘ = āˆ’1 āˆ’ š‘ž
š‘ = āˆ’1 āˆ’ (āˆ’4)
š‘ = āˆ’1 + 4
š‘ = 3
Hence, the required equation is š‘“(š‘„) = 3š‘„3 + 4š‘„2ā€“ 3š‘„ā€“ 4.

Factorization of 3š‘„3 + 4š‘„2ā€“ 3š‘„ā€“ 4 is
(š‘„2 āˆ’ 1)(3š‘„ + 4)
(š‘„ āˆ’ 1)(š‘„ + 1)(3š‘„ + 4)
Hence, the factors of 3š‘„3 + 4š‘„2ā€“ 3š‘„ā€“ 4 is (š‘„ āˆ’ 1)(š‘„ + 1)(3š‘„ + 4).

Question 10. Find the number which should be added to š‘„2 + š‘„ + 3 so that the resulting polynomial is completely divisible by (š‘„ + 3).
Solution:

Let us assumed that, the required number be k.
š‘“(š‘„) = š‘„2 + š‘„ + 3 + š‘˜
According to the question,
š‘„2 + š‘„ + 3 + š‘˜ is divisible by (š‘„ + 3) and remainder is 0.
š‘„ + 3 = 0
š‘„ = āˆ’3
Put the value of x in given equation,
(āˆ’3)2 + (āˆ’3) + 3 + š‘˜ = 0
9ā€“ 3 + 3 + š‘˜ = 0
9 + š‘˜ = 0
š‘˜ = āˆ’9
Hence, the required number is -9.

Question 11. When the polynomial š‘„3 + 2š‘„2ā€“ 5š‘Žš‘„ā€“ 7 is divided by (š‘„ā€“ 1), the remainder is A and when the polynomial š‘„3 + š‘Žš‘„2ā€“ 12š‘„ + 16 is divided by (š‘„ + 2), the remainder is B. Find the value of ā€˜aā€™ if 2š“ + šµ = 0.
Solution:

According to question,
š‘„3 + 2š‘„2ā€“ 5š‘Žš‘„ā€“ 7 is divided by (š‘„ā€“ 1), the remainder is A.
š‘„ā€“ 1 = 0
š‘„ = 1
Put the value of š‘„ in given equation,
š‘„3 + 2š‘„2ā€“ 5š‘Žš‘„ā€“ 7 = š“
1 + 2ā€“ 5š‘Ž āˆ’ 7 = š“
ā€“ 5š‘Žā€“ 4 = š“____(š‘–)
š‘„3 + š‘Žš‘„2 ā€“ 12š‘„ + 16 is divided by (š‘„ + 2), the remainder is B.
š‘„ + 2 = 0
š‘„ = āˆ’2
Put the value of š‘„ in given equation,
š‘„3 + š‘Žš‘„2 ā€“ 12š‘„ + 16 = šµ
(āˆ’2)3 + š‘Ž(āˆ’2)2ā€“ 12(āˆ’2) + 16 = šµ
āˆ’8 + 4š‘Ž + 24 + 16 = šµ
4š‘Ž + 32 = šµ_(š‘–š‘–)
It is given that 2A + B = 0
From equation (i) and (ii), we get,
2(āˆ’5š‘Žā€“ 4) + 4š‘Ž + 32 = 0
āˆ’10š‘Žā€“ 8 + 4š‘Ž + 32 = 0
āˆ’6š‘Ž + 24 = 0
6š‘Ž = 24
š‘Ž = 4
Hence, the value of š‘Ž is 4.

Question 12. (3š‘„ + 5) is a factor of the polynomial (š‘Žā€“ 1)š‘„3 + (š‘Ž + 1)š‘„2ā€“ (2š‘Ž + 1)š‘„ā€“ 15. Find the value of ā€˜aā€™, factorize the given polynomial completely.
Solution:

Let us assumed that,
š‘“(š‘„) = (š‘Ž āˆ’ 1)š‘„3 + (š‘Ž + 1)š‘„2 āˆ’ (2š‘Ž + 1)š‘„ āˆ’ 15
According to question,
(3š‘„ + 5) is a factor of š‘“(š‘„) and remainder = 0

āˆ’125(š‘Ž āˆ’ 1) + 75(š‘Ž + 1) + 45(2š‘Ž + 1) āˆ’ 405 = 0
40š‘Ž āˆ’ 160 = 0
40š‘Ž = 160
š‘Ž = 4
š‘“(š‘„) = (š‘Ž āˆ’ 1)š‘„3 + (š‘Ž + 1)š‘„2 āˆ’ (2š‘Ž + 1)š‘„ āˆ’ 15
š‘“(š‘„) = (4 āˆ’ 1)š‘„3 + (4 + 1)š‘„2 āˆ’ (2(4) + 1)š‘„ āˆ’ 15
š‘“(š‘„) = 3š‘„3 + 5š‘„2 āˆ’ 9š‘„ āˆ’ 15

Factorization of 3š‘„3 + 5š‘„2ā€“ 9š‘„ā€“ 15 is
(3š‘„ + 5)(š‘„2 āˆ’ 3)
(3š‘„ + 5)(š‘„ + āˆš3)(š‘„ āˆ’ āˆš3)
Hence, the factors of 3š‘„3 + 5š‘„2ā€“ 9š‘„ā€“ 15 is (3š‘„ + 5)(š‘„ + āˆš3)(š‘„ āˆ’ āˆš3).

Question 13. When divided by š‘„ā€“ 3 the polynomials š‘„3ā€“ š‘š‘„2 + š‘„ + 6 and 2š‘„3ā€“ š‘„2ā€“ (š‘ + 3)š‘„ā€“ 6 leave the same remainder. Find the value of ā€˜pā€™.
Solution:

It is given that,
(š‘„ā€“ 3) is factor of š‘“(š‘„) = š‘„3ā€“ š‘š‘„2 + š‘„ + 6,
š‘“(3) = (3)3ā€“ š‘(3)2 + 3 + 6
š‘“(3) = 27ā€“ 9š‘ + 3 + 6
š‘“(3) = 36ā€“ 9š‘
(š‘„ ā€“ 3) is factor of š‘”(š‘„) = 2š‘„3ā€“ š‘„2 + (š‘ + 3) āˆ’ 6
š‘”(3) = 2(3)3ā€“ (3)2ā€“ (š‘ + 3)(3)ā€“ 6
š‘”(3) = 2(27)ā€“ 9ā€“ (š‘ + 3)(3)ā€“ 6
š‘”(3) = 54ā€“ 9ā€“ 3š‘ + 9ā€“ 6
š‘”(3) = 30 āˆ’ 3š‘
It is also given that both the sides have equal remainder,
š‘“(3) = š‘”(3)
36ā€“ 9š‘ = 30ā€“ 3š‘
6š‘ = āˆ’6
š‘ = 1
Hence, the value of š‘ is 1.

Question 14. Use the Remainder Theorem to factorise the following expression: 2š‘„3 + š‘„2ā€“ 13š‘„ + 6.
Solution:

Let us assumed that,
š‘“(š‘„) = 2š‘„3 + š‘„2 āˆ’ 13š‘„ + 6
By Remainder theorem,
Put the š‘„ = 2, we get,
š‘“(2) = 2(2)3 + (2)2 āˆ’ 13(2) + 6
š‘“(2) = 2(8) + 4 āˆ’ 26 + 6
š‘“(2) = 16 + 4 āˆ’ 26 + 6
š‘“(2) = 0

Factorization of 2š‘„2 + 5š‘„ āˆ’ 3 is
(š‘„ āˆ’ 2)(2š‘„2 + 6š‘„ āˆ’ š‘„ āˆ’ 3)
(š‘„ āˆ’ 2)[2š‘„(š‘„ + 3) āˆ’ 1(š‘„ + 3)]
(š‘„ āˆ’ 2)(2š‘„ āˆ’ 1)(š‘„ + 3)
Hence, the factors of 2š‘„3 + š‘„2ā€“ 13š‘„ + 6 is (š‘„ āˆ’ 2)(2š‘„ āˆ’ 1)(š‘„ + 3).

Question 15. Using remainder theorem, find the value of k if on dividing 2š‘„3 + 3š‘„2ā€“ š‘˜š‘„ + 5 by š‘„ā€“ 2, leaves a remainder 7.
Solution:

Let us assumed that,
š‘“(š‘„) = 2š‘„3 + 3š‘„2ā€“ š‘˜š‘„ + 5
By Remainder Theorem,
š‘“(2) = 7
2(2)3 + 3(2)2ā€“ š‘˜(2) + 5 = 7
2(8) + 3(4) ā€“ 2š‘˜ + 5 = 7
16 + 12 ā€“ 2š‘˜ + 5 = 7
33 ā€“ 2š‘˜ = 7
2š‘˜ = 26
š‘˜ = 13
Hence, the value of š‘˜ is 13.

Question 16. What must be subtracted from 16š‘„3 ā€“ 8š‘„2 + 4š‘„ + 7 so that the resulting expression has 2š‘„ + 1 as a factor?
Solution:

Let us assumed that,
š‘“(š‘„) = 16š‘„3ā€“ 8š‘„2 + 4š‘„ + 7
It is given that 2š‘„ + 1 is a factor of 16š‘„3ā€“ 8š‘„2 + 4š‘„ + 7.
2š‘„ + 1 = 0
2š‘„ = āˆ’1
š‘„ = āˆ’ 1/2
Put the value š‘„ in given equation,

Selina ICSE Class 10 Maths Solutions Chapter 8 Remainder And Factor